Виктор Кощеев - Фотопейзаж и компьютер
- Название:Фотопейзаж и компьютер
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2020
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Виктор Кощеев - Фотопейзаж и компьютер краткое содержание
Фотопейзаж и компьютер - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Во второй главе посмотрим, каким образом обработка зрительной информации может быть описана математически. Затем в общих чертах коснемся аппаратуры, применяемой при обработке изображений (третья глава).
В четвертой главе рассмотрим компьютерные программы для обработки изображений.
В пятой главе опишем современные алгоритмы обработки изображений (без формул, только на уровне идей).
И, наконец, главы с шестой по восьмую посвящены собственно практическому применению современных методов обработки пейзажных фотографий.
Глава 1
Система «глаз-мозг» и фотоаппарат
Фотограф создает цифровую фотографию с помощью камеры и компьютера, а фотография оценивается автором и зрителем с помощью глаз и мозга. Знание деталей каждого из процессов этой цепочки не только интересно, но и полезно. В частности, обрабатывая снимок на компьютере, хочется не только знать, что нужно сделать для улучшения изображения, но и понимать почему .
В этой главе я собрал информацию о том, как человек воспринимает изображение. Точнее, о том, как человек получает и обрабатывает информацию об изображении. Ограничиваясь только сведениями, которые могут быть интересны фотографу. Я не биолог, поэтому почерпнул все эти сведения из литературы, приведенной в конце книжки, и, конечно, из интернета.
Что происходит, когда человек рассматривает реальный 3D-пейзаж? Световые лучи от источников света и отраженный от предметов свет попадают в глаз, преобразуются сетчаткой в нервные импульсы, которые передаются в мозг, обрабатываются там и, наконец, появляется осознание того, что же мы видим в данный момент. Рассмотрим этот процесс подробнее, но только с точки зрения обработки информации, не очень углубляясь в биологические детали.
1.1. Движения глазного яблока
Поле зрения одного глаза приблизительно характеризуется следующими углами (отсчитываются от оси глаза, когда он смотрит прямо перед собой):
• 90° – по горизонтали, в сторону, противоположную носу;
• 60° – по горизонтали, к носу;
• 60° – вверх;
• 65° – вниз.
Эти углы будут меньше, если учитывать не простую индикацию света, а способность различать трехмерность, или, тем более, цвет. Самое большое поле зрения для синего цвета, а самое маленькое – для зеленого. У некоторых птиц поле зрения по горизонтали достигает почти 360°. Для сравнения: угол поля зрения объектива: 9° и менее – сверхдлиннофокусный, от 40° до 60° – нормальный объектив, более 80° – сверхширокоугольный.
Когда то , что видно в поле зрения одного глаза, проецируется на сетчатку, наиболее резко воспринимается только та часть картинки, которая попадает на центральную ямку сетчатки ( фовеа). Менее резко – та часть, которая попадает на желтое пятно ( макула), в центре которого находится фовеа. И совсем нерезко и почти бесцветно – остальная часть. Если сравнить размеры перечисленных областей сетчатки (соответственно, 0.4 мм, 5 мм, 22 мм) (или в углах: 1° 40', 18° 20', 135° по горизонтали), то становится понятно, что, несмотря на такое широкое поле зрения, в каждый момент времени каждый глаз резко воспринимает только очень небольшой кусочек всей картинки.
Мы этого обычно не замечаем, потому что глаза сканируют пейзаж скачкообразно, совершая быстрые движения ( саккады, от двух до нескольких десятков угловых минут) примерно три-четыре раза в секунду, перемещаясь от одной привлекающей внимание детали к другой. В первую очередь привлекают внимание движущиеся или сильноконтрастные детали, а также участки, которые мозг по какой-то причине считает важными (например, исходя из своего предыдущего опыта). Какие-то другие части пейзажа могут остаться непросканированными. Что именно сканируется и в каком порядке – зависит еще и от целевой установки смотрящего ( что ему важно увидеть или не пропустить). Благодаря саккадам самая важная часть изображения рассматривается с большим разрешением с помощью проектирования на фовеа по частям.
В начале рассматривания нового пейзажа саккадические прыжки длинные, а периоды фиксации взгляда – короткие. Затем периоды фиксации удлиняются, а прыжки укорачиваются. С возрастом периоды фиксации укорачиваются, а прыжки удлиняются. Полагают, что это происходит благодаря накопленному опыту наблюдения.
Между саккадами в момент фиксации взора происходит дрейф – медленное и плавное смещение взора (от 3 до 30 угловых минут). Периоды дрейфа прерываются быстрыми движениями небольшой амплитуды (менее 1 ÷ 2 угловых минут) и случайного направления ( микросаккады). Микросаккады обычно возникают во время длительной фиксации (несколько секунд). И на все это накладывается еще и тремор – дрожание глаза с амплитудой 20–40 угловых секунд и с частотой 30–250 герц (измерение спектра частот тремора используется в диагностике состояния мозга, в частности, при проведении анестезии).
Роль микросаккад до конца невыяснена, но предполагают, что они нужны для компенсации смещения глаза из-за дрейфа и для поддержания изображения на сетчатке в движении (благодаря микросаккадам нейроны поддерживаются в активном состоянии из-за того, что неподвижные детали картинки перемещаются по их рецептивным полям, подробнее см. в следующем параграфе). Как показали эксперименты, если бы не было мелких движений глаз, мы бы видели только движущиеся предметы (как, например, видят лягушки). В этом случае при просмотре неподвижной сцены после начала каждой фиксации взгляда примерно через несколько секунд изображение бы полностью исчезало, а после перевода взгляда на другую точку новая картинка снова бы появлялась на несколько секунд.
Продолжительность фиксации взгляда примерно равна одной четверти секунды, но может быть разной, в зависимости от того, сколько времени нужно мозгу для завершения анализа соответствующей мгновенной картинки («кадра»). Интересно, что эти времена приблизительно кратны одной четверти секунды. Возможно, четверть секунды – это как раз именно то время, которое необходимо для выполнения алгоритма обработки глазом и мозгом одного «кадра». Поскольку во время выполнения саккадического прыжка информация от рецепторов сетчатки в мозг не передается, то нейроны мозга для обработки предыдущего «кадра» имеют дополнительное время. Еще один источник дополнительного времени – мигание.
1.2. Обработка зрительного сигнала рецепторами сетчатки
Свет, попадающий в глаз, проходит сквозь роговицу и хрусталик. Роговица и хрусталик играют роль двухлинзового объектива, причем линза-хрусталик имеет изменяемую кривизну и неравномерный коэффициент преломления, максимальный в центре и минимальный на периферии. Преломление света в роговице больше, чем в хрусталике, потому что коэффициенты преломления воздуха и роговицы различаются сильнее, чем коэффициенты преломления роговицы и хрусталика.
Читать дальшеИнтервал:
Закладка: