Андрей Павлов - Геометрия: Планиметрия в тезисах и решениях. 9 класс

Тут можно читать онлайн Андрей Павлов - Геометрия: Планиметрия в тезисах и решениях. 9 класс - бесплатно ознакомительный отрывок. Жанр: Математика. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Геометрия: Планиметрия в тезисах и решениях. 9 класс
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    3.6/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Андрей Павлов - Геометрия: Планиметрия в тезисах и решениях. 9 класс краткое содержание

Геометрия: Планиметрия в тезисах и решениях. 9 класс - описание и краткое содержание, автор Андрей Павлов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

В пособии конспективно изложен школьный курс геометрии. Приведены комплекты экзаменационных билетов, задачи и их решения, распределённые по различным уровням сложности.

Материалы пособия соответствуют учебной программе школьного курса геометрии.

Для учителей и учащихся 9-х классов.

Геометрия: Планиметрия в тезисах и решениях. 9 класс - читать онлайн бесплатно ознакомительный отрывок

Геометрия: Планиметрия в тезисах и решениях. 9 класс - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Андрей Павлов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Так как ЕК средняя линия треугольника ABD то AD 2 ЕК 163 см Из - фото 451

Так как ЕК средняя линия треугольника ABD, то AD = 2 ? ЕК 16/3 см. Из прямоугольного треугольника ADB находим

Геометрия Планиметрия в тезисах и решениях 9 класс - изображение 452

Ответ:

Геометрия Планиметрия в тезисах и решениях 9 класс - изображение 453

Задача 15 (рис. 224)

Рис 224 Решение Обозначим длину отрезка АС через х Из прямоугольного - фото 454

Рис. 224.

Решение. Обозначим длину отрезка АС через х. Из прямоугольного треугольника АЕС по теореме Пифагора находим

Поусловию BE EС 59 значит Площадь треугольника ABC равна 12 BD АС и - фото 455

Поусловию BE: EС = 5:9, значит,

Площадь треугольника ABC равна 12 BD АС и одновременно 12 АЕ ВС так что - фото 456

Площадь треугольника ABC равна 1/2 BD ? АС и одновременно 1/2 АЕ ? ВС, так что BD ? АС = АЕ ? ВС или

Геометрия Планиметрия в тезисах и решениях 9 класс - изображение 457

Последнее уравнение можно переписать в виде

Геометрия Планиметрия в тезисах и решениях 9 класс - изображение 458

Возведя последнее уравнение в квадрат, получим, что х2= 225, откуда х = 15, либо х = -15. Так как х – длина стороны, то х = 15. Следовательно, длина стороны АС равна 15.

Ответ: 15.

Задача 16 (рис. 225)

Рис 225 Решение По теореме синусов ВС 2Rsin ВАС 2 2 12 2 где R - фото 459

Рис. 225.

Решение. По теореме синусов ВС = 2Rsin ?ВАС = 2 ? 2 ? 1/2 = 2, где R – радиус описанной окружности. Так как АВ – хорда, то её длина не больше диаметра, т. е. АВ ? 2R = 4. Покажем, что АВ < 4. Если АВ = 4, то ?АСВ = ?/2 и должно выполняться равенство АВ2= АС2+ ВС2. Но оно не выполняется, так как 42? З2+ 22. Значит, АВ < 4. Тогда

Требуемое утверждение доказано Задача 17 рис 226 Рис 226 Решение - фото 460

Требуемое утверждение доказано.

Задача 17 (рис. 226)

Рис 226 Решение Пусть ВК и AD медианы проведенные соответственно к - фото 461

Рис. 226.

Решение. Пусть ВК и AD – медианы, проведенные соответственно к сторонам АС и ВС. Обозначим через Е точку их пересечения. Так как точка К – середина стороны АС и точка D – середина стороны ВС, то отрезок KD – средняя линия треугольника ABC. Следовательно, АВ = 2 ? KD. Так как по условию задачи ВК и AD перпендикулярны, то треугольники АЕК, KED, BED, АЕВ прямоугольные. Применяя теорему Пифагора к этим треугольникам, имеем:

Геометрия Планиметрия в тезисах и решениях 9 класс - изображение 462

Ответ:

Геометрия Планиметрия в тезисах и решениях 9 класс - изображение 463

Задача 22 (рис. 227)

Рис 227 Решение Пусть в треугольнике ABC АВ ВС 12 ABC 120 Так как - фото 464

Рис. 227.

Решение. Пусть в треугольнике ABC АВ = ВС = 12, ?ABC = 120°. Так как в треугольнике сумма углов равна 180°, то ?А + ?С = 180° – 120° = 60°. Учитывая, что в равнобедренном треугольнике углы при основании равны, получаем: ?А = 30°. Рассмотрим треугольник ВНА, где ВН – высота треугольника. ВН – катет в этом треугольнике, лежащий напротив угла в 30°.

Тогда ВН = 1/2 ? АВ = 6.

Ответ: 6.

Задача 23 (рис. 228)

Рис 228 Решение Поскольку высота в равнобедренном треугольнике проведённая - фото 465

Рис. 228.

Решение. Поскольку высота в равнобедренном треугольнике, проведённая к основанию, является и медианой треугольника, то AD = DC = 2. Тогда по теореме Пифагора имеем:

Естественно что и ВС 25 Воспользуемся формулой радиуса описанной около - фото 466

Естественно, что и ВС = 2?5. Воспользуемся формулой радиуса описанной около треугольника окружности R = abc/4S. Длины сторон треугольника равны 4, 2?5, 2?5, а площадь треугольника S = 1/2 ? AC ? BD = 1/2 ? 4 ? 4 = 8;

Тогда площадь круга Sкруга R2 254 Ответ 254 Задача 24 рис 229 - фото 467

Тогда площадь круга Sкруга = ?R2= 25?/4.

Ответ: 25?/4.

Задача 24 (рис. 229)

Рис 229 Решение Так как BD высота в равнобедренном треугольнике ABC то - фото 468

Рис. 229.

Решение. Так как BD – высота в равнобедренном треугольнике ABC, то она является и медианой, т. е. AD = DC. Так как AC/BC = 6/5, то можно обозначить DC = Зх; ВС = 5х (см. рис.). Из ?BCD по теореме Пифагора DB2+ DC2= ВС2. Или 82+ (Зх)2= (5х)2; х = 2. Радиус вписанной окружности r = S/P; площадь треугольника S = 1/2 АС ? BD = 1/2 ? 6х ? 8 = 48; полупериметр р = (5x + 5x + 6x)/2 = 16; r = 48/16 =3.

Ответ: 3.

Задача 25

Решение. Sзаштрихованного сектора = 1/3(Sкруга – Sтреугольника). Длина окружности l = 2?R. По условию l = 4?; 2?R = 4?; R = 2. Sкpyгa = ?R2= 4?. Длину стороны треугольника найдём по теореме синусов:

Геометрия Планиметрия в тезисах и решениях 9 класс - изображение 469

Ответ:

Геометрия Планиметрия в тезисах и решениях 9 класс - изображение 470

Задача 26 (рис. 230)

Рис 230 Решение Пусть К произвольная точка внутри равностороннего - фото 471

Рис. 230.

Решение. Пусть К – произвольная точка внутри равностороннего треугольника ABC со стороной а. Опустим перпендикуляры KM, KN, КР на стороны треугольника. Обозначим эти перпендикуляры следующим образом: КМ = х, KN = у, КР = z. Тогда SABC = SABK + SBKC + SAKC. Получаем равенство:

Отсюда a32 x y z Но высота h треугольника равна h a sin 60 - фото 472

Отсюда (a?3)/2 = x + y + z. Но высота h треугольника равна h = a ? sin 60° = (a?3)/2; значит, х + у + z = h.

Задача 31 (рис. 231)

Рис 231 Решение Так как AD высота в равнобедренном треугольнике ABC то - фото 473

Рис. 231.

Решение. Так как AD – высота в равнобедренном треугольнике ABC, то она является и медианой. Значит, BD = DC = 6. Тогда AD = BD = 6, так как ?ABD = ?BAD = 45°.

Можно было увидеть и другую закономерность. Так как D – середина гипотенузы, то D – центр описанной около треугольника ABC окружности. Значит. DA = DB = DC = 6.

Ответ: 6 см.

Задача 32 (рис. 232)

Рис 232 Решение Обозначим угол ВАС через Тогда AC BC ctg - фото 474

Рис. 232.

Решение. Обозначим угол ВАС через ?. Тогда AC = BC ? ctg?. Последовательно находим:

Ответ 965 345 6 Задача 33 рис 233 Рис 233 Решение Обозначим катеты - фото 475

Ответ: 96/5; 345, 6

Задача 33 (рис. 233)

Рис 233 Решение Обозначим катеты прямоугольного треугольника ABC с - фото 476

Рис. 233.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Андрей Павлов читать все книги автора по порядку

Андрей Павлов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Геометрия: Планиметрия в тезисах и решениях. 9 класс отзывы


Отзывы читателей о книге Геометрия: Планиметрия в тезисах и решениях. 9 класс, автор: Андрей Павлов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x