Дэвид Барри - Супернавигаторы. О чудесах навигации в животном мире
- Название:Супернавигаторы. О чудесах навигации в животном мире
- Автор:
- Жанр:
- Издательство:КоЛибри, Азбука-Аттикус
- Год:2020
- Город:Москва
- ISBN:978-5-389-12411-0
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Дэвид Барри - Супернавигаторы. О чудесах навигации в животном мире краткое содержание
А что же человек?.. Некоторые коренные народы до сих пор применяют древние методы навигации, позволяющие им совершать долгие и трудные путешествия на суше и на море, не используя даже карт и компасов — не говоря уже о GPS. Но мы по большей части целиком полагаемся на электронику. Мы можем определить свое местоположение одним нажатием кнопки, но на самом деле понятия не имеем, где мы находимся. Поворачиваясь спиной к окружающему нас миру, мы рискуем не только своим физическим и духовным благополучием, но, возможно, и своей безопасностью…
Эта книга показывает чудеса навигации, на которые способны животные, в совершенно новом свете, и будет интересна не только тем, кто увлекается животным миром, но и питает в себе страсть учиться, исследовать неизведанное и самосовершенствоваться.
Супернавигаторы. О чудесах навигации в животном мире - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
В 2014 году эти поразительные достижения были удостоены Нобелевской премии, которая была присуждена Мэй Бритт и Эдварду Мозер и Джону О’Кифу [468] По существующим правилам число лауреатов одной и той же Нобелевской премии не может быть больше трех.
.
Аналогичные специализированные навигационные нейроны уже найдены в мозге мышей, обезьян, летучих мышей и человека. Возможность прямой регистрации активности отдельных клеток человеческого мозга представляется только в случае вживления электродов для медицинских процедур, но существующие сейчас передовые технологии нейровизуализации позволяют ученым получать аналогичные результаты, не прибегая к хирургическим операциям. Также достоверно установлена важная роль гиппокампа в навигации голубей; хотя по строению он сильно отличается от гиппокампа крысы, в нем тоже есть специализированные «навигационные» нейроны [469] Sherry, D. F., Grella, S. L., Guigueno, M. F., White, D. J., & Marrone, D. F. (2017). ‘Are There Place Cells in the Avian Hippocampus?’, Brain, Behavior and Evolution, 90 (1). P. 73–80.
.
Однако многие вопросы по-прежнему остаются без ответа. Хотя нейроны места, решетки и направления головы вполне могут составлять основу «системы карты и компаса», знания своего местоположения и направления движения недостаточно. Нужно еще обладать способностью запланировать маршрут к цели и пройти по нему.
В этом отношении кажутся перспективными специализированные клетки мозга, генерирующие импульсы во время прохождения крысой сложного лабиринта. Эти нейроны, расположенные вне гиппокампа, по-видимому, определяют маршруты и цели. В самом гиппокампе также были найдены другие клетки, которые, как кажется, участвуют в прокладке маршрутов [470] Geva-Sagiv, M., Las, L., Yovel, Y., & Ulanovsky, N. (2015). ‘Spatial cognition in bats and rats: from sensory acquisition to multiscale maps and navigation’, Nature Reviews Neuroscience, 16 (2). P. 94.
.
Разумеется, лабораторные эксперименты проводятся в чрезвычайно искусственных условиях, не отражающих реальной жизни в дикой природе. Навигация в реальном мире может осуществляться на расстояниях, доходящих до сотен или даже тысяч километров. В большинстве случаев эксперименты касаются лишь двумерной навигации, в то время как многим животным — особенно умеющим летать или плавать — приходится ориентироваться в трех измерениях. Как именно их (и наш) мозг справляется с такими в высшей степени сложными задачами, пока неясно [471] Finkelstein, A., Las, L., & Ulanovsky, N. (2016). ‘3-D maps and compasses in the brain’, Annual Review of Neuroscience, 39. P. 171–196; Grieves, R. M., & Jeffery, K. J. (2017). ‘The representation of space in the brain’, Behavioural Processes, 135. P. 113–131.
.
Поэтому было бы чрезвычайно полезно получить возможность изучения работы мозга животного во время его свободных перемещений в естественной среде. Израильский ученый Нахум Улановский уже разработал хитроумные методы регистрации активности отдельных клеток мозга летучей мыши в полете [472] Ulanovsky, N., & Moss, C. F. (2007). ‘Hippocampal cellular and network activity in freely moving echolocating bats’, Nature Neuroscience, 10 (2). P. 224–233.
, и эти методы, возможно, вскоре будут применяться и для других животных.
Хотя центральную роль в решении навигационных задач играют гиппокамп и тесно связанные с ним зоны, ясно, что другие отделы мозга также вносят в эту работу важный вклад. Во время перемещений животного в его среде обитания разные области мозга обмениваются сигналами, когда животное вспоминает, где оно было раньше, или думает, куда следовать дальше. Как именно эти сложные «соединения» влияют на процесс навигации, остается загадкой.
Также ясно, что гиппокамп играет очень важную роль, а не только помогает формировать карту физических окрестностей и прокладывать маршрут. Он совершенно необходим для сохранения воспоминаний о людях, предметах, событиях и отношениях: возможно даже, что его основная функция состоит в образовании абстрактного «пространства памяти», в котором могут храниться и обрабатываться самые разнообразные концепции. С этой точки зрения гиппокамп не столько выполняет сами навигационные расчеты, сколько предоставляет запоминающее устройство, необходимое для успешной навигации [473] Eichenbaum, H., & Cohen, N. J. (2014). ‘Can we reconcile the declarative memory and spatial navigation views on hippocampal function?’, Neuron, 83 (4). P. 764–770.
.
Очевидно, мы не знаем еще очень многого, но в недавнем обзоре пятидесяти с лишним лет исследований Мозеры предлагают смелый вывод, что навигация, возможно, будет «одной из первых когнитивных функций, механистические аспекты которых мы сможем понять» [474] Moser, E. I., Moser, M. B., & McNaughton, B. L. (2017). ‘Spatial representation in the hippocampal formation: a history’, Nature Neuroscience, 20 (11). P. 1448–1464.
.
При этом остается неразрешенным один интересный философский вопрос. Хотя нам достоверно известно, что гиппокамп и ЭК играют в навигации ключевую роль, можно спорить об основе той пространственно-временной системы координат, которая, по-видимому, реализуется в них. Большинство нейробиологов, следуя положениям классической физики, считает самоочевидным, что пространство и время являются фундаментальными, неизменными измерениями реальности — внешнего мира , — каким-то образом представленными в нашем мозге.
Однако современная физика утверждает, что на самом деле пространство и время не являются ни отдельными, ни тем более неизменными измерениями. Наше субъективное восприятие как пространства, так и времени также чрезвычайно изменчиво. Значит ли это, что существуют другие возможности? Возможно, пространство и время всего лишь конструкты , порождаемые нашим физическим взаимодействием с миром [475] Buzsáki, G., & Llinás, R. (2017). ‘Space and time in the brain’, Science, 358 (6362). P. 482–485.
.
Молодой исследователь Андриус Пашуконис, который раньше работал в Венском университете, а теперь перешел в Стэнфорд, провел долгое время в дождевых лесах Гвианы, терпеливо изучая крошечных (длиной 25 миллиметров) лягушек [476] Речь идет о трехполосом древолазе ( Ameerega trivittata ).
, обладающих замечательными — и пока что необъяснимыми — способностями.
Самцы этого вида занимают маленькие участки подлеска, защищают их от конкурентов и привлекают туда самок своими криками. После спаривания самки откладывают яйца, а самцы осторожно переносят их в лужи, расположенные в других частях леса, в которых могут вылупляться и расти головастики. Затем самцы возвращаются на свою территорию. Пашуконис сконструировал специальную неопреновую повязку, позволяющую прикреплять к самцам радиотрекеры, и относил их на расстояние до 800 метров от их участков.
К удивлению Пашукониса, лягушкам не просто удавалось найти обратную дорогу: они перемещались по весьма прямым маршрутам, хотя их путешествия занимали иногда до нескольких суток. Учитывая, что дождевой лес — место весьма хаотичное, полное шумов, запахов и физических препятствий, а обзор неба в нем весьма ограничен, очень трудно понять, как им это удавалось [477] Pašukonis, A., Loretto, M. C., & Hödl, W. (2017). ‘Map-like navigation from distances exceeding routine movements in the three-striped poison frog (Ameerega trivittata)’, Journal of Experimental Biology, jeb-169714.
.
Интервал:
Закладка: