Эрик Хобсбаум - Эпоха крайностей. Короткий двадцатый век (1914–1991)

Тут можно читать онлайн Эрик Хобсбаум - Эпоха крайностей. Короткий двадцатый век (1914–1991) - бесплатно полную версию книги (целиком) без сокращений. Жанр: Исторические приключения, издательство Литагент Corpus, год 1994. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Эрик Хобсбаум - Эпоха крайностей. Короткий двадцатый век (1914–1991) краткое содержание

Эпоха крайностей. Короткий двадцатый век (1914–1991) - описание и краткое содержание, автор Эрик Хобсбаум, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
“Эпоха крайностей: Короткий двадцатый век (1914–1991)” – одна из главных работ известного британского историка-марксиста Эрика Хобсбаума. Вместе с трилогией о “длинном девятнадцатом веке” она по праву считается вершиной мировой историографии.
Хобсбаум делит короткий двадцатый век на три основных этапа. “Эпоха катастроф” начинается Первой мировой войной и заканчивается вместе со Второй; за ней следует “золотой век” прогресса, деколонизации и роста благополучия во всем мире; третий этап, кризисный для обоих полюсов послевоенного мира, завершается его полным распадом. Глубокая эрудиция и уникальный культурный опыт позволяют Хобсбауму оперировать примерами из самых разных областей исторического знания: истории науки и искусства, экономики и революционных движений. Ровесник века, космополит и коммунист, которому тяжело далось прощание с советским мифом, Хобсбаум уделяет одинаковое внимание Европе и обеим Америкам, Африке и Азии.
Ему присущ дар говорить с читателем на равных, просвещая без снисходительности и прививая способность систематически мыслить. Трезвый анализ процессов конца второго тысячелетия обретает новый смысл в начале третьего: будущее, которое проступает на страницах книги, сегодня стало реальностью. “Эпоха крайностей”, увлекательная и поразительно современная книга, – незаменимый инструмент для его осмысления.

Эпоха крайностей. Короткий двадцатый век (1914–1991) - читать онлайн бесплатно полную версию (весь текст целиком)

Эпоха крайностей. Короткий двадцатый век (1914–1991) - читать книгу онлайн бесплатно, автор Эрик Хобсбаум
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

И как теперь относиться к точности научных наблюдений, если оказалось, что сам процесс наблюдения физических явлений на субатомном уровне изменяет эти явления? Ведь чем точнее мы хотим знать положение частицы на субатомном уровне, тем неопределеннее становится ее скорость. Приведем весьма типичное высказывание по поводу возможности любых способов детального наблюдения за точным положением электрона: “Характеристики электрона можно измерить, только уничтожив его” (Weisskopf, 1980, р. 37). Этот парадокс был в 1927 году обобщен в знаменитый “принцип неопределенности” блестящим молодым немецким физиком Вернером Гейзенбергом и с тех пор носит его имя. Тот факт, что в названии принципа фигурировало слово “неопределенность”, достаточно показателен. Название определяло круг проблем, волновавших исследователей новой научной парадигмы, отказавшихся от привычной научной определенности. И дело совсем не в том, что сами ученые сомневались в своих построениях или приходили к спорным заключениям. Напротив, их теоретические выкладки, при всем кажущемся неправдоподобии и странности, подтверждались результатами наблюдений и опыта. В частности, общая теория относительности Эйнштейна, казалось бы, нашла свое подтверждение в 1919 году. Изучавшая солнечное затмение британская экспедиция обнаружила, что свет от ряда удаленных звезд отклонялся в направлении Солнца в соответствии с общей теорией относительности. В практическом отношении физика элементарных частиц являлась такой же предсказуемой и закономерной, как и классическая физика, только совершенно в ином роде; и в любом случае на макроатомном уровне законы Ньютона и Галилея оставались неизменными. Но ученых беспокоило, что они не понимают, как совместить старые и новые теории.

Между 1924 и 1927 годами этот дуализм, не дававший покоя физикам первой четверти двадцатого века, был преодолен или, скорее, обойден при помощи блестящих построений математической физики. Речь идет о квантовой механике, почти одновременно созданной в нескольких странах. То, что находится внутри атома, является не волной или частицей, а неразделимым “квантовым состоянием”, которое представляет собой либо волну, либо частицу, либо то и другое вместе. Рассматривать квантовое состояние как непрерывное или прерывистое движение бессмысленно, поскольку мы никогда не сможем шаг за шагом проследить весь путь электрона. Такие понятия классической физики, как положение в пространстве, скорость или инерция, просто неприменимы за рамками принципа неопределенности Гейзенберга. Разумеется, появились и другие теории, приводящие к вполне предсказуемым результатам. Эти теории описывали особые состояния, вызванные “волнами” или вибрацией (отрицательно заряженных) электронов, находящихся в ограниченном пространстве атома около (положительно заряженного) ядра. Последовательные “квантовые состояния” в ограниченном пространстве вызывали поддающиеся определению сочетания различных частот, которые, как это показал Шрёдингер в 1926 году, можно точно вычислить, так же как и соответствующую им энергию (“волновую механику”). Такая модель поведения электрона обладала замечательной прогностической способностью и многое объясняла. В частности, много лет спустя, когда при попытке создания атомной бомбы в Лос-Аламосе во время атомной реакции был впервые получен плутоний. Количество плутония оказалось настолько малó, что его свойства не поддавались наблюдению. Однако на основе количества электронов в атоме этого элемента, а также конфигурации девяноста четырех электронов, вибрирующих вокруг ядра, и только по этим данным, ученые (верно) предсказали, что плутоний – коричневый металл с плотностью около 20 граммов на кубический сантиметр, обладающий определенной электрической и тепловой проводимостью и эластичностью. Квантовая механика объясняла, почему атомы (а также молекулы и основанные на них образования более высокого уровня) остаются стабильными или, скорее, почему для изменения их состояния требуется дополнительная энергия. Нередко отмечалось, что

даже феномен живого – в частности, структура ДНК и сопротивление нуклеотидов термальным воздействиям при комнатной температуре – основан на базовых квантовых эффектах. Например, одни и те же цветы расцветают каждую весну именно из‐за стабильности конфигурации различных нуклеотидов (Weisskopf, 1980, р. 35–38).

Но этот великий и удивительно плодотворный прорыв в понимании законов природы стал возможен за счет отрицания всего того, что раньше считалось в науке определенным и адекватным, а также за счет вынужденного отказа от недоверия к абсурдным на первый взгляд представлениям. Все это вызывало беспокойство ученых старшего поколения. Чего стоит хотя бы концепция “антиматерии”, предложенная кембриджским ученым Полем Дираком в 1928 году. Дирак открыл, что его уравнение имеет решение, только если допустить существование электронных состояний с энергией меньше энергии вакуума. И многие физики с энтузиазмом приняли “антиматерию”, совершенно бессмысленную с точки зрения здравого смысла (Weinberg, 1977, p. 23–24). Само понятие “антиматерия” подразумевало сознательный отказ от установки, что прогресс теоретических построений обязан считаться с любыми установленными представлениями о реальности: теперь именно реальности приходилось подстраиваться под математические уравнения. Но принять все это оказалось непросто даже ученым, уже давно отказавшимся от убеждения великого Резерфорда, что любую хорошую физическую теорию можно объяснить официантке.

Даже великие первооткрыватели новой науки, например Макс Планк и Альберт Эйнштейн, никак не могли примириться с завершением эпохи определенности. В частности, Альберт Эйнштейн выразил сомнения по поводу истинности исключительно вероятностных законов, а не детерминистской причинности, в своей знаменитой фразе “Бог не играет в кости”. Для этого утверждения не было никаких оснований, кроме “внутреннего голоса, говорившего мне, что квантовая механика не является окончательной истиной” (цит. по: Jammer, 1996, р. 358). Некоторые создатели квантовой механики мечтали устранить противоречия, подчинив одну область другой: Шрёдингер надеялся, что его “волновая механика” превратит “скачки” электронов с одной атомной орбиты на другую в непрерывный процесс изменения энергии и таким образом сохранит классические представления о пространстве, времени и причинности. Скептические первооткрыватели новой науки, особенно Планк и Эйнштейн, вздохнули с облегчением, и совершенно напрасно. Новая эпоха уже наступила. Старые правила больше не годились.

Но сумеют ли физики приспособиться к постоянным противоречиям? Нильс Бор полагал, что могут и просто обязаны. Учитывая природу человеческого языка, не существует способа выразить целостность природы посредством одной и единой системы. Не может быть одной-единственной, всеобъемлющей модели всего на свете. Все, что нам остается делать, – это постигать реальность различными способами и соединять их так, чтобы они дополняли друг друга, “образуя исчерпывающую совокупность различных описаний, включающих явно противоречивые понятия” (Holton, 1970, р. 1018). В этом заключается смысл введенного Бором “принципа дополнительности”, который по сути являлся метафизической концепцией, близкой понятию “относительности”. Бор позаимствовал его из источников, весьма далеких от физики, и рассматривал как имеющий универсальную сферу применения. “Дополнительность” Бора была призвана не содействовать исследованиям в области ядерной физики, а, скорее, успокоить физиков в их замешательстве. Притягательность этого принципа зиждется прежде всего на его иррациональности. Ведь даже если мы все (и не в последнюю очередь умные ученые) знаем, что существуют различные способы восприятия одной и той же реальности, иногда несовместимые или противоречащие друг другу, которые необходимо осознать в совокупности, – мы все равно не представляем, как их соединить. Воздействие сонаты Бетховена на слушателей можно анализировать с точки зрения физики, физиологии или психологии; наконец, сонату можно просто слушать, – но совершенно неясно, как эти способы понимания связаны между собой. Этого не знает никто.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Эрик Хобсбаум читать все книги автора по порядку

Эрик Хобсбаум - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Эпоха крайностей. Короткий двадцатый век (1914–1991) отзывы


Отзывы читателей о книге Эпоха крайностей. Короткий двадцатый век (1914–1991), автор: Эрик Хобсбаум. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x