Стивен Строгац - Удовольствие от Х

Тут можно читать онлайн Стивен Строгац - Удовольствие от Х - бесплатно ознакомительный отрывок. Жанр: Прочая старинная литература, издательство Манн, Иванов и Фербер, год 2014. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Стивен Строгац - Удовольствие от Х краткое содержание

Удовольствие от Х - описание и краткое содержание, автор Стивен Строгац, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Удовольствие от Х - читать онлайн бесплатно ознакомительный отрывок

Удовольствие от Х - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Стивен Строгац
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Однако всем поклонникам рациональности Евклида не хватает понимания интуитивных аспектов геометрии. Без вдохновения не было бы никаких доказательств или теорем, которые следует доказать в первую очередь. Как и при сочинении музыки или стихов, в геометрии требуется получить что-то из ничего. Как поэту найти нужные слова или композитору — западающую в память мелодию? Это тайна музыки; своя тайна присуща и математике.

В качестве иллюстрации рассмотрим задачу построения равностороннего треугольника. Правила игры заключаются в том, что вам дают одну сторону треугольника (отрезок), как показано на рисунке:

картинка 68

Ваша задача — найти способ использовать этот отрезок для построения двух других сторон и доказать, что у них такая же длина, как и у первой. Причем в вашем распоряжении только поверочная линейка и циркуль. Линейка позволяет начертить прямую линию любой длины или соединить прямой линией две любые точки. Циркуль помогает нарисовать окружность любого радиуса с центром в любой точке.

Однако имейте в виду, что это не обычная линейка: на ней нет делений и ее нельзя использовать для измерения длины. (Другими словами, она не подходит для копирования или измерения исходного отрезка.) Циркулем нельзя измерять углы, а можно только строить окружности.

Готовы? Поехали!

Вы в ступоре. С чего начать?

Логика здесь не поможет. Те, кому приходится часто принимать решения, знают, что в такой ситуации лучше всего расслабиться и попробовать разгадать головоломку в надежде, что что-нибудь придет в голову. Например, с помощью поверочной линейки попробовать через концы отрезка провести наклонные линии.

Не повезло Хотя линии образуют треугольник нет никакой гарантии что он - фото 69

Не повезло. Хотя линии образуют треугольник, нет никакой гарантии, что он равносторонний .

Пытаемся провести несколько окружностей с помощью циркуля и опять попадаем пальцем в небо. Где выбрать центр окружности? В конечных точках отрезка?

Удовольствие от Х - изображение 70

Или в какой-то его внутренней точке?

Удовольствие от Х - изображение 71

Второй вариант выглядит совершенно бесперспективным, поэтому нет смысла перебирать все внутренние точки отрезка одну за другой. Так что давайте вернемся к построению окружности вокруг конечных точек.

К сожалению здесь много неопределенности Какими должны быть радиусы - фото 72

К сожалению, здесь много неопределенности. Какими должны быть радиусы окружностей? Что ж, пока мы ничего не смогли придумать.

Спустя несколько минут бесполезных размышлений вы, окончательно расстроившись, готовы сдаться. Но если мы все-таки устоим перед соблазном и продолжим, то нам, возможно, повезет, и мы поймем, что нужно построить всего одну окружность. Давайте посмотрим, что произойдет, если поставить иголку циркуля на один конец отрезка, карандаш на другой, а потом сделать циркулем полный оборот. Выйдет следующее:

Конечно если бы мы использовали в качестве центра окружности другую конечную - фото 73

Конечно, если бы мы использовали в качестве центра окружности другую конечную точку, то получили бы другое изображение:

Как насчет того чтобы одновременно нарисовать обе окружности без причины - фото 74

Как насчет того, чтобы одновременно нарисовать обе окружности без причины, просто ради интереса?

Вас словно током ударило Вы даже задрожали от предвкушения Взгляните еще раз - фото 75

Вас словно током ударило? Вы даже задрожали от предвкушения? Взгляните еще раз на рисунок. Оттуда на нас «уставилось» соблазнительно округлое изображение равностороннего треугольника. Его верхний угол — точка пересечения окружностей.

Удовольствие от Х - изображение 76

А теперь давайте превратим его в обычный прямосторонний треугольник, проведя линии через точку пересечения и конечные точки исходного треугольника. В результате треугольник выглядит точно так же, как равносторонний.

Удовольствие от Х - изображение 77

Мы позволили интуиции завести нас так далеко, что теперь и только теперь наступило время логике взяться за доказательство и завершить его. Для наглядности сделаем панорамную съемку полного изображения и промаркируем интересующие нас точки как A , B и C .

А вот и само доказательство У сторон АС и ВС такая же длина как и у исходного - фото 78

А вот и само доказательство. У сторон АС и ВС такая же длина, как и у исходного отрезка АВ , поскольку радиусы обеих окружностей равны длине отрезка AB . АС и ВС — радиусы окружностей, имеющие такую же длину. Следовательно, все три длины равны и треугольник является равносторонним. Что и требовалось доказать.

Идея с радиусами окружностей существует уже много столетий. Действительно, она открывает первую книгу евклидовых «Начал». Но укоренившаяся тенденция предлагать ученикам уже готовую окончательную схему с хитрыми окружностями лишает их радости открытия. Это педагогическая ошибка. Такой подход настраивает молодого человека на то, что идея очевидна. А ведь она может стать озарением для каждого нового поколения, если учить его правильно.

Конечно, ключом к данному доказательству было вдохновенное построение двух окружностей. С его помощью можно доказать еще одну, более известную теорему, которая звучит следующим образом: сумма углов треугольника равна 180°.

В этом случае лучшим будет не доказательство Евклида, а более раннее, приписываемое пифагорейцам. Делается это так. Рассмотрим любой треугольник и обозначим его углы, как a , b и c .

Через верхний угол треугольника проведем линию параллельную основанию - фото 79

Через верхний угол треугольника проведем линию, параллельную основанию.

Теперь на секунду отвлечемся и вспомним свойства параллельных прямых если - фото 80

Теперь на секунду отвлечемся и вспомним свойства параллельных прямых: если третья прямая пересекает две параллельные прямые, как здесь,

то углы помеченные как а равны Попробуем применить это свойство углов к - фото 81

то углы, помеченные как а , равны.

Попробуем применить это свойство углов к сделанным выше построениям, в которых через вершину угла треугольника проведена прямая, параллельная его основанию.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Стивен Строгац читать все книги автора по порядку

Стивен Строгац - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Удовольствие от Х отзывы


Отзывы читателей о книге Удовольствие от Х, автор: Стивен Строгац. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x