Ричард Фейнман - 2. Пространство. Время. Движение

Тут можно читать онлайн Ричард Фейнман - 2. Пространство. Время. Движение - бесплатно полную версию книги (целиком) без сокращений. Жанр: Прочая старинная литература. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Ричард Фейнман - 2. Пространство. Время. Движение краткое содержание

2. Пространство. Время. Движение - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

2. Пространство. Время. Движение - читать онлайн бесплатно полную версию (весь текст целиком)

2. Пространство. Время. Движение - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

И наконец, теория относительности подсказала нам еще кое-что; может быть, это был чисто технический совет, но он оказался чрезвычайно полезным при изучении других физи­ческих законов. Совет состоял в том, что надо обращать внимание на симметрию законов, или, более определенно, искать способы, с помощью которых законы можно преобразовать, сохраняя при этом их форму. Когда мы обсуждали теорию векторов, мы отмечали, что основные законы движения не меняются, когда мы особым образом изменяем пространственные и временные переменные (пользуемся преобразованием Ло­ренца). Идея изучать операции, при которых основные законы не меняются, оказалась и впрямь очень полезной.

§ 2. Парадокс близнецов

Чтобы продолжить наше изучение преобразований Лоренца и релятивистских эффектов, рассмотрим известный «пара­докс» — парадокс близнецов, скажем, Петера и Пауля. Подросши, Пауль улетает на космическом корабле с очень высокой скоростью. Петер остается на Земле. Он видит, что Пауль уносится с огромной скоростью, и ему кажется, что часы Пауля замедляют свой ход, сердце Пауля бьется реже, мысли текут ленивее. С точки зрения Петера, все замирает. Сам же Пауль, конечно, ничего этого не замечает. Но когда после долгих странствий он возвратится на Землю, он окажется моложе Петера! Верно ли это? Да, это одно из тех следствий теории относительности, которые легко продемонстрировать. Мю-мезоны живут дольше, если они движутся; так и Пауль про­живет дольше, если будет двигаться. «Парадоксом» это явление называют лишь те, кто считает, что принцип относительности утверждает относительность всякого движения. Они восклицают: «Хе-хе-хе! А не можем ли мы сказать, что с точки зрения Пауля двигался Петер и что именно Петер должен был медленнее стареть? Из симметрии тогда следует единственный возможный вывод: при встрече возраст обоих братьев должен оказаться одинаковым».

Но ведь чтобы встретиться и помериться годами, Пауль должен либо остановиться в конце путешествия и сравнить часы, либо, еще проще, вернуться. А возвратиться может только тот, кто двигался. И он знает о том, что двигался, потому что ему пришлось повернуть, а при повороте на корабле произошло много необычных вещей: заработали ракеты, пред­меты скатились к одной стенке и т. д. А Петер ничего этого не испытал.

Поэтому можно высказать такое правило: тот, кто почув­ствовал ускорение, кто увидел, как вещи скатывались к стенке, и т. д.,— тот и окажется моложе. Разница между братьями имеет «абсолютный» смысл, и все это вполне правильно. Когда мы обсуждали долгую жизнь движущегося мю-мезона, в ка­честве примера мы пользовались его прямолинейным движением сквозь атмосферу. Но можно породить мю-мезоны и в лаборатории и заставить с помощью магнита их двигаться по кругу. И даже при таком ускоренном движении они проживут дольше, причем столько же, сколько и при прямолинейном движении с этой скоростью. Можно было бы попытаться разрешить парадокс опытным путем: сравнить покоящийся мю-мезон с закрученным по кругу. Несомненно, окажется, что закру­ченный мю-мезон проживет дольше. Такого опыта еще никто не ставил, но он и не нужен, потому что и так все прекрасно согласуется. Конечно, те, кто настаивает на том, что каждый отдельный факт должен быть непосредственно проверен, этим не удовлетворятся. А мы все же уверенно беремся предсказать результат опыта, в котором Пауль кружится по замкнутому кругу.

§ 3. Преобразование скоростей

Главное отличие принципа относительности Эйнштейна от принципа относительности Ньютона заключается в том, что законы преобразований, связывающих координаты и времена в системах, движущихся относительно друг друга, различны.

Правильный закон преобразований (Лоренца) таков:

Эти уравнения отвечают сравнительно простому случаю когда наблюдатели движутся - фото 28

Эти уравнения отвечают сравнительно простому случаю, когда наблюдатели движутся относительно друг друга вдоль общей оси х. Конечно, мыслимы и другие направления движения, но самое общее преобразование Лоренца выглядит довольно сложно: в нем перемешаны все четыре числа. Мы и впредь будем пользоваться этой простой формулой, так как она содержит в себе все существенные черты теории относительности.

Рассмотрим теперь дальнейшие следствия этого преобра­зования. Прежде всего интересно разрешить эти уравнения относительно х, у, z, t. Это система четырех линейных урав­нений для четырех неизвестных, и их можно решить — вы­разить х, у, z, t через х', у', z', t'. Результат этот потому ин­тересен, что он говорит нам, как «покоящаяся» система коор­динат выглядит с точки зрения «движущейся». Ясно, что из-за относительности движения и постоянства скорости тот, кто «движется», может, если пожелает, счесть себя неподвижным, другого — движущимся. А поскольку он движется в обратную сторону, то получит то же преобразование, но с противоположным знаком у скорости. Это в точности то, что дает и прямое решение системы, так что все сходится. Вот если бы не сошлось, было бы от чего встревожиться!

Теперь займемся интересным вопросом о сложении скоростей в теории - фото 29

Теперь займемся интересным вопросом о сложении скоростей в теории относительности. Напомним, что первоначально загадка состояла в том, что свет проходит 300 000 км/сек во всех системах, даже если они движутся друг относительно друга. Это — частный случай более общей задачи. Приведем пример. Пусть предмет внутри космического корабля движется вперед со скоростью 200 000 км/сек; скорость самого корабля тоже 200 000 км/сек. С какой скоростью перемещается предмет с точки зрения внешнего наблюдателя? Хочется сказать: 400 000 км/сек, но эта цифра уж больно подозрительна: полу­чается скорость большая, чем скорость света! Разве можно себе это представить?

Общая постановка задачи такова. Пусть скорость тела внутри корабля равна v (с точки зрения наблюдателя на корабле), а сам корабль имеет скорость и по отношению к Земле. Мы желаем знать, с какой скоростью v x это тело движется с точки зрения земного наблюдателя. Впрочем, это тоже не самый общий случай, потому что движение происходит в направ­лении х. Могут быть формулы для преобразования скоростей в направлении у или в любом другом; если они будут нужны, их всегда можно вывести. Внутри корабля скорость тела равна v x ' . Это значит, что перемещение х' равно скорости, умноженной на время:

x'=v x · ' t'. (16.3)

Остается только подсчитать какие у тела значения х и t с точки зрения внешнего - фото 30

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




2. Пространство. Время. Движение отзывы


Отзывы читателей о книге 2. Пространство. Время. Движение, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x