Нихиль Будума - Основы глубокого обучения

Тут можно читать онлайн Нихиль Будума - Основы глубокого обучения - бесплатно ознакомительный отрывок. Жанр: Экономика, издательство Манн, Иванов и Фербер, год 2020. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Основы глубокого обучения
  • Автор:
  • Жанр:
  • Издательство:
    Манн, Иванов и Фербер
  • Год:
    2020
  • Город:
    Москва
  • ISBN:
    9785001464723
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Нихиль Будума - Основы глубокого обучения краткое содержание

Основы глубокого обучения - описание и краткое содержание, автор Нихиль Будума, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Глубокое обучение — раздел машинного обучения, изучающий глубокие нейронные сети и строящий процесс получения знаний на основе примеров. Авторы рассказывают об основных принципах решения задач в глубоком обучении и способах внедрения его алгоритмов.

Основы глубокого обучения - читать онлайн бесплатно ознакомительный отрывок

Основы глубокого обучения - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Нихиль Будума
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Ограничения традиционных компьютерных программ

Почему некоторые задачи компьютерам решать тяжело? Стандартные программы доказали свою состоятельность в двух областях: 1) они очень быстро ведут вычисления; 2) они неукоснительно следуют инструкциям. Если вы финансист и вам нужно провести сложные математические подсчеты, вам повезло. Типовые программы вам в помощь. Но представьте себе, что нам нужно сделать кое-что поинтереснее: например, написать программу для автоматического распознавания почерка. Возьмем за основу рис. 1.1.

Рис. 1.1. Изображение из массива рукописных данных MNIST [2] LeCun Y., Bottou L., Bengio Y., Haffner P. Gradient-Based Learning Applied to Document Recognition // Proceedings of the IEEE. 1998. November. Vol. 86 (11). Pp. 2278–2324.

Хотя каждая цифра на рисунке слегка отличается от предыдущей, мы легко опознаем в первом ряде нули, во втором — единицы и т. д. Теперь напишем компьютерную программу, которая решит ту же задачу. Какие правила нужно задать, чтобы различать цифры?

Начнем с простого. Например, укажем, что нулю соответствует изображение округлого замкнутого контура. Все примеры с рис. 1.1 Рис. 1.1. Изображение из массива рукописных данных MNIST [2] LeCun Y., Bottou L., Bengio Y., Haffner P. Gradient-Based Learning Applied to Document Recognition // Proceedings of the IEEE. 1998. November. Vol. 86 (11). Pp. 2278–2324. Хотя каждая цифра на рисунке слегка отличается от предыдущей, мы легко опознаем в первом ряде нули, во втором — единицы и т. д. Теперь напишем компьютерную программу, которая решит ту же задачу. Какие правила нужно задать, чтобы различать цифры? Начнем с простого. Например, укажем, что нулю соответствует изображение округлого замкнутого контура. Все примеры с рис. 1.1 , кажется, удовлетворяют этому определению, но таких признаков недостаточно. Что, если у кого-то ноль — не всегда замкнутая фигура? И как отличить такой ноль (см. рис. 1.2) от шестерки? Рис. 1.2. Ноль, алгоритмически трудноотличимый от шестерки Можно задать рамки расстояния между началом и концом петли, но не очень понятно какие. И это только начало проблем. Как различить тройки и пятерки? Четверки и девятки? Можно добавлять правила, или признаки , после тщательных наблюдений и месяцев проб и ошибок, но понятно одно: процесс будет нелегок. Многие другие классы задач попадают в ту же категорию: распознавание объектов и речи, автоматический перевод и т. д. Мы не знаем, какие программы писать для них, потому что не понимаем, как с этим справляется наш мозг. А если бы и знали, такая программа была бы невероятно сложной. , кажется, удовлетворяют этому определению, но таких признаков недостаточно. Что, если у кого-то ноль — не всегда замкнутая фигура? И как отличить такой ноль (см. рис. 1.2) от шестерки?

Рис 12 Ноль алгоритмически трудноотличимый от шестерки Можно задать рамки - фото 1

Рис. 1.2. Ноль, алгоритмически трудноотличимый от шестерки

Можно задать рамки расстояния между началом и концом петли, но не очень понятно какие. И это только начало проблем. Как различить тройки и пятерки? Четверки и девятки? Можно добавлять правила, или признаки , после тщательных наблюдений и месяцев проб и ошибок, но понятно одно: процесс будет нелегок.

Многие другие классы задач попадают в ту же категорию: распознавание объектов и речи, автоматический перевод и т. д. Мы не знаем, какие программы писать для них, потому что не понимаем, как с этим справляется наш мозг. А если бы и знали, такая программа была бы невероятно сложной.

Механика машинного обучения

Для решения таких задач нужен совсем иной подход. Многое из того, что мы усваиваем в школе, похоже на стандартные компьютерные программы. Мы учимся перемножать числа, решать уравнения и получать результаты, следуя инструкциям. Но навыки, которые мы получаем в самом юном возрасте и считаем самыми естественными, усваиваются не из формул, а на примерах.

Например, в двухлетнем возрасте родители не учат нас узнавать собаку, измеряя форму ее носа или контуры тела. Мы можем отличать ее от других существ, потому что нам показали много примеров собак и несколько раз исправили наши ошибки. Уже при рождении мозг дал нам модель, описывающую наше мировосприятие. С возрастом благодаря ей мы стали на основе получаемой сенсорной информации строить предположения о том, с чем сталкиваемся. Если предположение подтверждалось родителями, это способствовало укреплению модели. Если же они говорили, что мы ошиблись, мы меняли модель, дополняя ее новой информацией. С опытом она становится все точнее, поскольку включает больше примеров. И так происходит на подсознательном уровне, мы этого даже не понимаем, но можем с выгодой использовать.

Глубокое обучение — отрасль более широкой области исследований искусственного интеллекта: машинного обучения , подразумевающего получение знаний из примеров. Мы не задаем компьютеру огромный список правил решения задачи, а предоставляем модель , с помощью которой он может сравнивать примеры, и краткий набор инструкций для ее модификации в случае ошибки. Со временем она должна улучшиться настолько, чтобы решать поставленные задачи очень точно.

Перейдем к более строгому изложению и сформулируем идею математически. Пусть наша модель — функция h ( x, θ). Входное значение x— пример в векторной форме. Допустим, если x— изображение в оттенках серого, компоненты вектора — интенсивность пикселей в каждой позиции, как показано на рис. 1.3.

Рис. 1.3. Векторизация изображения для алгоритма машинного обучения

Входное значение θ — вектор параметров, используемых в нашей модели. Программа пытается усовершенствовать их значения на основе растущего числа примеров. Подробнее мы рассмотрим этот вопрос в главе 2.

Чтобы интуитивно понимать модели машинного обучения, рассмотрим пример. Допустим, мы решили узнать, как предсказывать результаты экзаменов, если известно количество часов сна и учебы в день перед испытанием. Мы собираем массив данных и при каждом замере х = [ x 1x 2 ] T записываем количество часов сна ( x 1), учебы ( x 2) и отмечаем, выше или ниже они средних по классу. Наша цель — создать модель h(х) с вектором параметров θ = [θ 0θ 1θ 2] T , чтобы:

По нашему предположению проект модели hх θ будет таким как описано выше - фото 2

По нашему предположению, проект модели h(х) будет таким, как описано выше (с геометрической точки зрения он описывает линейный классификатор, делящий плоскость координат надвое). Теперь мы хотим узнать вектор параметров θ, чтобы научить модель делать верные предсказания (−1, если результаты ниже среднего уровня, и 1 — если выше) на основании примерного входного значения x. Такая модель называется линейным персептроном и используется с 1950-х [3] Rosenblatt F. The perceptron: A probabilistic model for information storage and organization in the brain // Psychological Review. 1958. Vol. 65. No. 6. P. 386. . Предположим, наши данные соответствуют тому, что показано на рис. 1.4.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Нихиль Будума читать все книги автора по порядку

Нихиль Будума - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Основы глубокого обучения отзывы


Отзывы читателей о книге Основы глубокого обучения, автор: Нихиль Будума. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x