Лев Николаев - Металлы в живых организмах

Тут можно читать онлайн Лев Николаев - Металлы в живых организмах - бесплатно полную версию книги (целиком) без сокращений. Жанр: Детская образовательная литература, год 1986. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Лев Николаев - Металлы в живых организмах краткое содержание

Металлы в живых организмах - описание и краткое содержание, автор Лев Николаев, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
В научно-популярной форме автор рассказывает о роли металлов в биохимических процессах, протекающих в живых организмах. Книга будет способствовать расширению кругозора учащихся.

Металлы в живых организмах - читать онлайн бесплатно полную версию (весь текст целиком)

Металлы в живых организмах - читать книгу онлайн бесплатно, автор Лев Николаев
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Кофермент А состоит из адениннуклеотида двух остатков фосфорной кислоты - фото 43

Кофермент А состоит из аденин-нуклеотида, двух остатков фосфорной кислоты, пантотеновой кислоты (пант. к.) и аминоэтантиола

Продолжим наше движение по циклу. Кетоглутаровая кислота превращается в янтарную (имеющую четыре атома углерода), теряя углекислый газ и два атома водорода; при этом одна молекула воды входит в цикл. Далее следуют реакции превращения янтарной кислоты в фумаровую, фумаровой — в яблочную и яблочной — в щавелевоуксусную. Как видно из рисунка 7, все эти превращения сопровождаются отщеплением двух пар атомов водорода и присоединением молекулы воды. Щавелевоуксусная кислота также может быть источником образования аминокислоты (аспарагиновой), однако ее основная функция заключается в том, что она в форме, содержащей двойную связь (енол), вступает в реакцию с остатком уксусной кислоты СН3СО (в составе ацетил-КоА), снова запуская цикл.

В работе цикла принимают участие ионы железа и магния, ускоряющие реакции, отмеченные на схеме стрелками. Так, активный центр фермента аконитазы содержит цистеин и ионы двухзарядного железа. Ионы железа в аконитазе осуществляют своеобразную функцию — они способствуют переносу группы ОН от одного атома углерода к другому, что необходимо для превращения лимонной кислоты в изолимонную. Ионы магния участвуют в работе фермента, который катализирует отнятие водорода от изолимонной кислоты. Скорость этой реакции определяет скорость прохождения всего цикла.

Подводя итог работы цикла за один оборот, мы видим, что молекула пировиноградной кислоты в результате прохождения цикла присоединила три молекулы воды, отдала в общей сложности пять пар атомов водорода и образовала три молекулы углекислого газа. Этот результат можно записать уравнением:

Молекула пировиноградной кислоты в результате прохождения цикла присоединила - фото 44

Молекула пировиноградной кислоты в результате прохождения цикла присоединила три молекулы воды, отдала в общей сложности пять пар атомов водорода и образовала три молекулы углекислого газа

Куда же девается водород, потерянный в этих реакциях? Он присоединяется к коферменту НАД +, а затем через флавиновые ферменты и цитохромы добирается до кислорода, образуя в конечном счете воду [5] Электроны, полученные при окислении пирувата до ацетила и углекислого газа, тоже попадают к НАД, но через переносчик ФАД. .

Обратим внимание на необычайную деликатность обращения химических машин клетки с тем сырьем, которое им приходится перерабатывать, и на то, как много сложных промежуточных этапов включает этот замечательный цикл, образующий водород и углекислоту и разделяющий их. Необходимо помнить, что каждый этап связан с определенным ферментом (всего в цикле участвуют восемь ферментов) и, следовательно, со специфическим белком, участвующим в катализе. Для чего все это? Неужели нельзя окислить уксусную кислоту менее хитроумным способом? Можно. Достаточно, например, насыпать в тигель перекиси натрия и добавить туда немного концентрированной уксусной кислоты, чтобы увидеть признаки бурной реакции: возникает пламя, выделяется теплота, и органическое соединение полностью сгорает до углекислого газа и воды. Однако энергия, полученная столь эффектным способом, теряется и, рассеиваясь в окружающей атмосфере, не может быть использована даже для простого нагревания.

Клетки используют энергию окисления для достижения многих разнообразных целей: механической работы мышцы, поддержания температуры тела и, самое главное, для осуществления химических синтезов, в частности синтеза белков. Вот почему окисление, при котором теплота просто рассеивается, неприемлемо для клеток. Здесь энергию надо сохранить и использовать не только на получение водорода, но и на его дальнейшее окисление таким образом, чтобы последнее было сопряжено с другой реакцией, поглощающей энергию, аккумулирующей ее, например, в форме связей в АТФ.

Водород после завершения цикла Кребса находится в форме НАД*Н, т.е. связан с коферментом фермента дегидрогеназы. Оказалось, что водород, отдаваемый НАД-Н, присоединяется затем к флавиновым ферментам (иначе называемым флавопротеидами, ФП), которые в свою очередь переходят в гидрированную форму, а кофермент НАД возвращается в прежнее состояние (НАД +) и готовится к приему новых частиц Н -. От флавиновых ферментов водород движется через дыхательную цепь, состоящую из белковых соединений железа — так называемых цитохромов, причем собственно по цепи цитохромов переходят электроны, а водород в виде ионов Н +остается в водной среде.

Неожиданно выяснилось, что между циклом трикарбоновых кислот и дыхательной цепью существует еще одно звено. Его открыл Мортон в Англии, а затем Крейн и Грин установили характер его функций. Это соединение способно обратимо окисляться и восстанавливаться и представляет собой хинон с длинной боковой цепью: его назвали убихиноном ("вездесущий хинон"). Для хинонов характерна реакция восстановления: превращение кето-групп С=O в спиртовые группы С-ОН, сопровождающиеся перестройкой системы двойных связей, как это показано на схеме. Именно убихинон и передает электроны от флавиновых ферментов в цепочку цитохромов (сокращенно его обозначают KoQ):

Для хинонов характерна реакция восстановления Подробнее мы опишем свойства - фото 45

Для хинонов характерна реакция восстановления

Подробнее мы опишем свойства цитохромов и работу дыхательной (или электронпереносящей) цепи в следующей главе.

От цитохромов электроны попадают к атомам кислорода. Получившиеся отрицательно заряженные ионы кислорода соединяются с ионами Н+, образуя воду — конечный продукт окисления.

Окислению в организме подвергаются, конечно, не только углеводы. По энергетической ценности на втором месте после углеводов стоят жиры. Подобный способ извлечения энергии применяется клетками и для окисления жиров в результате их превращения в ацетил-КоА.

Пути превращения белков в клетках сложны и многообразны. При гидролизе белков под влиянием протеолитических ферментов образуются аминокислоты. Последние могут дезаминироваться, иначе говоря, терять аминогруппу, или переаминироваться, т. е. обменивать группу NH 2на кетогруппу. Это дает возможность аминокислотам наряду с другими веществами принимать участие в цикле Кребса, в общем потоке жизненно важных реакций. Так, аминокислота — аспарагиновая (четыре атома углерода), теряя аминогруппу в процессе дезаминирования, превращается в щавелевоуксусную кислоту (четыре атома углерода), активно участвующую в цикле Кребса. Другой участник цикла — кетоглутаровая кислота (пять атомов углерода) — может появиться в результате превращений глутаминовой кислоты (пять атомов углерода), гистидина и др. Эти реакции перебрасывают мост между обменом белков и обменом углеводов и жиров. Цикл Кребса является, таким образом, универсальной биохимической машиной, перерабатывающей разнообразное сырье в углекислый газ и водород.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Лев Николаев читать все книги автора по порядку

Лев Николаев - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Металлы в живых организмах отзывы


Отзывы читателей о книге Металлы в живых организмах, автор: Лев Николаев. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x