Александр Штейнгауз - Девять цветов радуги
- Название:Девять цветов радуги
- Автор:
- Жанр:
- Издательство:Детгиз
- Год:1963
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Александр Штейнгауз - Девять цветов радуги краткое содержание
Из этой книги вы узнаете, что такое свет видимый и невидимый, как он помогает людям познавать и исследовать окружающий мир, проникать в глубь вещества и в космос. Кроме того, вы прочтете о том, как человек научился видеть в темноте, передавать на огромные расстояния изображения и запечатлевать процессы, длящиеся миллионные доли секунды. Обо всем этом и о других новых достижениях науки и техники рассказано в книге «Девять цветов радуги».
Девять цветов радуги - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Именно эти выводы и положены в основу объяснения явления фотоэффекта. Они позволяют создать не только качественную, но и количественную теорию этого явления.
Однако это далеко не все. Определение светового кванта — фотона, данное Планком чисто математически, ничего не говорило о физической сущности фотона; оно описывало только его энергию. Но о том, как ведет себя фотон в пространстве, каким, хотя бы очень приближенно, следует представлять его, никто до Эйнштейна не говорил. Пояснить понятие фотона Эйнштейну помогла созданная им теория относительности.
Один из важных выводов этой теории говорит, что фотон обладает массой. Правда, в отличие от обычных тел, фотон не имеет массы покоя. Его вообще нельзя мыслить неподвижным — он может перемещаться в пространстве только со скоростью света, ибо он и есть свет, вернее, частица его. Но не та ньютоновская корпускула, которая представлялась как некое мельчайшее зернышко, как некое абсолютно упругое тельце и которую вполне можно представить себе неподвижной в пространстве и неизменной во времени. Нет, фотон совсем не таков: он весь в движении, он не может существовать вне его.
И все же, несмотря на такие необычайные свойства фотона, многие признаки дали ученым право отнести его к разряду частиц и, следовательно, вновь пересмотреть свои воззрения на природу света.
В наши дни свет уже не считается волновым явлением в классическом смысле этого слова.
Как же быть в таком случае с волновыми представлениями? Неужели волновая теория неверна и от нее следует отказаться? К счастью, нет. Не только не следует, но и невозможно перечеркнуть волновую теорию. Ибо она по-прежнему верно отражает и объясняет огромное количество фактов, широкое многообразие проявлений света. Но не все. Теперь мы знаем, что волновая теория хоть и верна, но не всеобъемлюща. Иными словами, она не является универсальной теорией, так как не в состоянии объяснить, например, такое явление, как фотоэффект. Точно так же не была универсальной и теория света, в создании которой участвовал Эйнштейн. Новая корпускулярная, или квантовая, теория, дав объяснение фотоэффекта и других явлений и даже предсказав новые важные факты, столкнулась с непреодолимыми трудностями при попытке объяснить с помощью новых понятий явления интерференции и дифракции.
Вот какое положение сложилось в оптике после возникновения новой теории света.
В одних случаях ученым по-прежнему приходилось пользоваться волновой теорией, в других — новыми представлениями, новой теорией. Правда, между двумя этими теориями не было «непроходимой пропасти»; целый ряд фактов, таких, например, как давление света, не противоречил обеим теориям. И это давало надежду создать такую теорию, которая с равным успехом была бы применима как для объяснения явлений интерференции и дифракции, так и явлений излучения черного тела и фотоэффекта.
И действительно, в годы последовавшего бурного развития было сделано многое, для того чтобы осмыслить и устранить подобную двойственность теорий, двойственность понимания природы света.
В эти годы учеными был открыт поразительный факт, показывавший, что электрон, подобно свету, может в отдельных случаях толковаться как частица, а в других случаях — как волна. Иными словами, они открыли, что в некоторых условиях электрон ведет себя как волна.
Длина волны, связанной с электроном, зависит от его скорости. Чем скорость выше, тем короче волна. Так, при ускорении электрона в электростатическом поле конденсатора, к обкладкам которого приложено напряжение 25 тысяч вольт, длина волны, связанной с электроном, будет равна 0,0075 миллимикрона, или 7,5 ангстрема. Движущийся электрон, встречаясь на своем пути с малым (сравнимым с длиной волны) препятствием, так же, как и свет, испытывает дифракцию. А это ли не самое очевидное доказательство его волновых свойств?!
Проявление электроном столь, казалось бы, противоположных свойств подтверждает гениальное высказывание Владимира Ильича Ленина, который в книге «Материализм и эмпириокритицизм» писал:
«„Сущность“ вещей или „субстанция“ тоже относительны; они выражают только углубление человеческого познания объектов, и если вчера это углубление не шло дальше атома, сегодня — дальше электрона и эфира, то диалектический материализм настаивает на временном, относительном, приблизительном характере всех этих вех познания природы прогрессирующей наукой человека. Электрон так же неисчерпаем, как и атом…»
Иногда понимают это утверждение Ленина как прямое указание на дальнейшую «механистическую» делимость электрона. Отрицать в настоящее время возможность такого разделения когда-либо в будущем, видимо, нельзя. Но Владимир Ильич говорил не об этом — он утверждал лишь неисчерпаемость электрона как объект человеческого познания. И правота его слов теперь блестяще подтверждена уже известными ступенями познания электрона: лучи — частица — волна. И, чем глубже мы будем проникать в тайны природы, тем больше различных свойств того же электрона будет нам открываться.
Это в полной мере относится и к познанию света. Современным уровнем знаний никоим образом не исчерпывается история развития физических представлений о свете. Они будут обогащаться и углубляться, пока будет развиваться сама физика, ибо свет — один из самых важных объектов этой науки.
Итак, рассказ о природе света закончен, вернее, прерван на том месте, где следовало бы перейти к самым современным, значительно более полным и точным воззрениям на природу света. Можно было бы продолжить рассказ дальше, но тем не менее здесь это не будет сделано.
И вот по каким причинам.
Прежде всего потому, что современная теория света оперирует такими понятиями, которые коренным образом отличаются от понятий и явлений, воспринимаемых непосредственно нашими чувствами. Говоря о современных понятиях теории света, советский физик, академик Сергей Иванович Вавилов (1891–1951) указывал, что они не могут быть представлены в воображении или описаны словами, — описать их можно только языком математики.
«Наши механистические понятия, — писал он, — не в состоянии полностью охватить реальность, для этого не хватает наглядных образов».
Кроме того, нынешний этап развития теории света далеко еще не завершен, и это обстоятельство еще более усугубляет трудности популярного ее изложения.
Мы можем сказать только то, что физикам удалось если не полностью, то в значительной степени продвинуться в деле создания единой теории света, которая в равной мере правильно объясняет все известные на сегодня явления в области оптики. Эта теория одновременно позволила ученым значительно глубже понять природу света.
Читать дальшеИнтервал:
Закладка: