Александр Штейнгауз - Девять цветов радуги
- Название:Девять цветов радуги
- Автор:
- Жанр:
- Издательство:Детгиз
- Год:1963
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Александр Штейнгауз - Девять цветов радуги краткое содержание
Из этой книги вы узнаете, что такое свет видимый и невидимый, как он помогает людям познавать и исследовать окружающий мир, проникать в глубь вещества и в космос. Кроме того, вы прочтете о том, как человек научился видеть в темноте, передавать на огромные расстояния изображения и запечатлевать процессы, длящиеся миллионные доли секунды. Обо всем этом и о других новых достижениях науки и техники рассказано в книге «Девять цветов радуги».
Девять цветов радуги - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Способность глаза давать резкое изображение объектов, находящихся на разных расстояниях, называется аккомодацией. Аккомодация, или наводка на резкость, осуществляется с помощью хрусталика. Только происходит она не путем перемещения хрусталика в глазу вдоль оптической оси, а путем изменения кривизны его поверхностей или, иными словами, путем изменения фокусного расстояния оптической системы глаза. Когда мы смотрим вдаль, хрусталик делается наименее выпуклым, а фокусное расстояние наибольшим; когда разглядываем ближние предметы, хрусталик становится более выпуклым.
К сожалению, с возрастом аккомодация глаза ухудшается, так как хрусталик теряет свои упругие свойства. Уже к сорока годам аккомодация значительно падает, а к семидесяти пяти годам глаз почти полностью теряет способность одинаково резко видеть (без помощи очков) как близкие, так и далекие предметы.
Хрусталик послужил когда-то образцом для первых стеклянных линз. С тех пор прошло много веков, и искусство варки и обработки стекла достигло высокой степени совершенства. Оптические предприятия многих развитых стран изготавливают из оптического стекла линзы и зеркала самой различной формы и размеров. Одни можно разглядеть только в лупу, другие — огромных размеров. Например, для Крымской обсерватории было сделано стеклянное зеркало для телескопа-рефлектора весом 4 тонны и рабочим диаметром 2,6 метра. Его обработка велась при строго постоянной температуре и длилась 15 месяцев.

Изменение выпуклости хрусталика позволяет людям четко видеть предметы и людей, находящихся на различных расстояниях. При правильной аккомодации изображение фокусируется точно на сетчатке и воспринимается нами четко. У близорукого человека изображение фокусируется не на сетчатке, а ближе к хрусталику; у дальнозоркого, наоборот, четко сфокусированное изображение должно находиться за сетчаткой, вне пределов глаза. Чтобы видеть четко, близорукому или дальнозоркому человеку необходимо носить очки.
В самые последние годы ученые и инженеры сумели создать новые типы объективов, обладающих очень ценными свойствами. Это так называемые варифокальные объективы, фокусное расстояние которых может плавно изменяться в широких пределах по желанию оператора. Иногда такие объективы называют резиновыми. Они представляют собой весьма сложные оптико-механические системы, состоящие из нескольких стеклянных линз, каждая из которых сама по себе имеет неизменное фокусное расстояние.
Но одиночную линзу с переменным фокусным расстоянием пока еще изобрести никому не удалось. Создать линзу по типу хрусталика, используя неупругое стекло, невозможно. Для этого следует искать новые оптические материалы. Теперь, когда промышленность пластиков бурно развивается, можно надеяться, что будет найден и такой пластик, который окажется пригодным для создания искусственного хрусталика. А он очень нужен в медицине для лечения грозной болезни: катаракты — помутнения хрусталика. Но в нем нуждаются не только больные. Можно смело сказать, что изобретение линз с переменным фокусным расстоянием привело бы к революции в ряде областей оптической промышленности.
Сосудистая оболочка глаза, о которой уже говорилось, не является последней. За ней следует слой особых клеток, содержащих в себе фусцин — черный пигмент. Их назначение станет ясным несколько позже.
И, наконец, последняя, самая важная и наиболее интересная для нас оболочка — сетчатка, или ретина. Именно она делает наш глаз зрячим. Сетчатка имеет очень сложное строение, и сама состоит из многих слоев. Здесь не стоит говорить о каждом из них, тем более, что назначение некоторых слоев до сих пор неясно науке. Зато следует подробно рассказать о тех клетках, которые воспринимают свет и преобразуют в сигналы, идущие в мозг. Эти клетки изучены относительно подробно.
Оказывается, в сетчатке глаза есть два типа светочувствительных клеток. Это— палочки и колбочки, получившие такие названия благодаря своей форме.

Палочка (слева) и колбочка.
Глядя на их изображение, вы сможете убедиться, что сходство со своими прообразами у них крайне отдаленное. Это лишний пример того, как тщательно следует выбирать научные термины и как осторожно приходится толковать даже самые простые слова, если они одновременно употребляются языком науки.
Внутреннее пространство глаза между хрусталиком и сетчаткой заполнено особым прозрачным веществом, называемым стекловидным телом.
Размеры светочувствительных клеток очень малы. Диаметр палочки примерно равен 0,002 миллиметра (2 микронам), ее длина около 0,06 миллиметра (60 микронов). Диаметр колбочки несколько больше, в среднем 0,005 миллиметра (5 микронов), а длина — 0,07 миллиметра (70 микронов).
В процессе эволюционного развития глаза, который впервые зародился у живых существ, населявших океан, первыми светочувствительными клетками были палочки. Они давали возможность морским животным видеть в глубинах вод, где есть лишь рассеянный солнечный свет, проникающий сквозь толщу воды. Колбочки появились гораздо позже, лишь после того, как живые существа стали приспосабливаться к жизни на суше.
В палочках содержится особое вещество розового цвета — зрительный пурпур, или родопсин. Под воздействием света зрительный пурпур разлагается, выцветает. Этот процесс идет тем быстрее, чем больше света попадает в палочку. Когда же свет прекращает действие, родопсин снова восстанавливает свои первоначальные свойства. Разложение родопсина представляет собой сложную фотохимическую реакцию, суть которой пока не очень ясна ученым. Для нас это несущественно. Важно лишь то, что эта реакция сопровождается возникновением электрохимических потенциалов в палочке или колбочке, которые по зрительному нерву передаются в мозг. Именно эти электрические сигналы переносят в мозг информацию о свете, цвете и форме предметов. В мозгу они расшифровываются особыми органами и воспринимаются как изображение окружающего.
Совсем недавно (всего лишь в 1940 году) в колбочках было открыто светочувствительное вещество фиолетового цвета, названное иодопсином. Его назначение то же, что и у зрительного пурпура. Однако роль колбочек отличается от роли палочек.
Палочки гораздо чувствительнее колбочек. Палочки позволяют нам видеть в сумерках, при слабом освещении, но зато не дают возможности ощущать и различать цвета. Пословица недаром говорит, что «ночью все кошки серы». Это не шутка. В темноте мы действительно не различаем цветов, а можем лишь определить разницу в освещенностях: дорога светлее растущих по ее обочинам кустов, дальний лес темнее неба, однако ни зелени листьев, ни синевы небес, ни цвета дорожной пыли мы не различаем. Но стоит лишь наступить дню, как все вокруг меняется, весь мир становится ярким и красочным; вместо смутных расплывчатых контуров мы видим окружающее во всем его великолепном разнообразии. Этим мы обязаны колбочкам, именно они обеспечивают цветное зрение.
Читать дальшеИнтервал:
Закладка: