Александр Штейнгауз - Девять цветов радуги

Тут можно читать онлайн Александр Штейнгауз - Девять цветов радуги - бесплатно полную версию книги (целиком) без сокращений. Жанр: Детская образовательная литература, издательство Детгиз, год 1963. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Александр Штейнгауз - Девять цветов радуги краткое содержание

Девять цветов радуги - описание и краткое содержание, автор Александр Штейнгауз, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Задумывались ли вы когда-нибудь о том, сколько цветов в радуге? Семь, а может быть, девять, как говорит название книги? Оказывается, их значительно больше, но в то же время название книги правильное. Почему же это так?
Из этой книги вы узнаете, что такое свет видимый и невидимый, как он помогает людям познавать и исследовать окружающий мир, проникать в глубь вещества и в космос. Кроме того, вы прочтете о том, как человек научился видеть в темноте, передавать на огромные расстояния изображения и запечатлевать процессы, длящиеся миллионные доли секунды. Обо всем этом и о других новых достижениях науки и техники рассказано в книге «Девять цветов радуги».

Девять цветов радуги - читать онлайн бесплатно полную версию (весь текст целиком)

Девять цветов радуги - читать книгу онлайн бесплатно, автор Александр Штейнгауз
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

На приемной стороне тоже имеется барабан. Как и на передающей стороне, он находится в полной темноте. Вращается он строго одинаково с первым барабаном. На приемном барабане помещают лист фотобумаги и направляют на него сфокусированный тончайший луч света от неоновой лампы. Движение этого луча также точнейшим образом согласовано с движением луча на передающей стороне. Разница же заключается в том, что луч света на передающей стороне имеет строго неизменную яркость, а на приемной — яркость луча меняется в соответствии с поданными на неоновую лампу сигналами.

Оба луча света очень тоненькие, так что одновременно засвечиваются очень маленькие участки изображения. Именно поэтому удается выделять, передавать и воспроизводить даже очень мелкие участки изображений.

Вот каким образом работает фототелеграф — замечательное устройство, объединившее в себе достижения электроники, фотографии, техники источников света, оптики, точной механики и, конечно, связи.

Необходимо обратить особое внимание на одно необыкновенно важное свойство фототелеграфа, отличающее его от всех известных до сих пор устройств, в том числе и глаза.

В глазу четкое изображение, полученное в центральной ямке, раскладывалось на отдельные элементы («квадратики») с помощью 40–50 тысяч колбочек и передавалось в мозг одновременно по такому же количеству «проводов» — нервных волокон. Общая же картина, воспринимаемая глазом, передается по миллиону таких волокон, соединенных со 137 миллионами палочек и колбочек. В фотографии имеет место нечто сходное — изображение запечатлевается одновременно на огромном количестве зерен фотоэмульсии.

В фототелеграфе дело обстоит совсем иначе. В нем есть всего лишь одна «колбочка» — фотоэлемент и один провод (обратным проводом является земля). Но тем не менее изображение передается, и очень неплохое. О его качестве может судить всякий, кто получил фототелеграмму.

Передача изображения с помощью одного фотоэлемента и по одному проводу оказалась возможной только благодаря примененному нами методу кодирования или преобразования изображения в сигналы. В соответствии с этим методом все изображение разбивалось на отдельные строки, а строки — на отдельные мелкие точки различной яркости: элементы изображения. Все элементы изображения передавались в строгом порядке, в строгой последовательности. При таком методе поверхность изображения как бы преобразовывалась в новое качество — во время. Это очень важное преобразование. Именно оно позволило осуществить передачу изображения по одному проводу и сравнительно несложным путем.

Электронный глаз

Преобразование, о котором мы только что говорили, довольно давно известно ученым. Оно применяется не только в фототелеграфии, но и в самом совершенном виде современной связи — в телевидении. Создать его без помощи такого преобразования было бы немыслимо. И столь же немыслимым оказалось бы изобретение «зеницы» телевидения — передающих телевизионных трубок, самых совершенных электровакуумных приборов, основанных на фотоэффекте.

В фототелеграфе плоскость изображения обегал тоненький, как игла, луч света. При телевизионной передаче тоже иногда применяется подобный метод. Здесь он носит название «развертка бегущим лучом». Правда, в отличие от фототелеграфа, в телевидении бегущий луч не отражается от поверхности изображения, а чаще всего работает на просвет. Ясно, что при этом можно передавать изображения, нанесенные на прозрачную основу: кинофильмы, диапозитивы, рисунки на стекле, в частности различные неподвижные вставки, которые часто показывают по телевидению во время перерывов.

С помощью развертки бегущим лучом были переданы на Землю и фотографии невидимой с Земли стороны Луны.

Но для передачи пространственных сцен и особенно для внестудийных передач такой способ непригоден. Поэтому основной метод телевизионной передачи изображения иной. Разумеется, принцип последовательной, поэлементной передачи остается неизменным и в этом случае.

При телевизионном методе передачи изображение всегда освещено полностью, а разбивается оно на отдельные элементы («квадратики») при помощи очень большого количества фотоэлементов. Их берется столько, сколько требуется для передачи всех элементов изображения. Так, в отечественном телевидении предусмотрена разбивка изображения (кадра) на 625 строк. В строке же содержится 865 элементов [35] Фактически по ряду причин строка разбивается на меньшее число элементов. В плохих телевизионных камерах и в плохих телевизорах количество элементов в строке может понизиться даже до 400–450. . Следовательно, все изображение раскладывается на 625x865 = 540 625 элементов. На первый взгляд кажется, что установить совместно такое огромное количество фотоэлементов невозможно. Правда, оно значительно меньше количества светочувствительных клеток в сетчатке, но тем не менее очень велико. Изобретатели все же нашли выход: вместо такого большого числа отдельных фотоэлементов они предложили использовать один, но особого рода. Называется такой фотоэлемент мозаикой.

Мозаика… Не вызывает ли это слово каких-либо ассоциаций? Вы уже, наверное, вспомнили сетчатку глаза, очень похожую на мозаику, сложенную из палочек и колбочек. И эта ассоциация действительно не случайна. Телевизионная мозаика тоже сложена из огромного количества отдельных светочувствительных крупинок, каждая из которых представляет собой чрезвычайно малый по размерам фотокатод или микроскопический фотоэлемент.

Для изготовления мозаики берут тщательно обработанную и очищенную пластинку из прозрачного изоляционного материала и в специальной установке наносят на одну из ее поверхностей мельчайшие капельки светочувствительного вещества, такого же, как и в фотокатодах обычных фотоэлементов. Их наносят путем распыления, через особого рода пульверизатор. Сделать мозаику хорошего качества нелегко. Нужно, чтобы все мельчайшие крупинки равномерно покрыли всю поверхность и в то же время не соприкасались между собой. Ведь если они будут иметь между собой электрический контакт, то отдельные миниатюрные фотокатоды сольются в один большой катод. С его же помощью разложить изображение на отдельные элементы будет невозможно.

Мозаику помещают в специальную электронную лампу — передающую телевизионную трубку. На поверхность мозаики, так же как и в обычных фотоаппаратах, проектируют с помощью объективов изображение. Под воздействием света фотокатоды испускают большее или меньшее количество электронов, которые притягиваются к специальному собирающему электроду. Сами по себе эти электроны не нужны. Важно здесь то, что, отдавая электроны, светочувствительные зерна мозаики приобретают положительный заряд. Величина заряда зависит от освещенности зерна, от яркости «точки» изображения, которая сфокусирована на данный участок мозаики.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Александр Штейнгауз читать все книги автора по порядку

Александр Штейнгауз - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Девять цветов радуги отзывы


Отзывы читателей о книге Девять цветов радуги, автор: Александр Штейнгауз. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x