Феофан Бублейников - О движении

Тут можно читать онлайн Феофан Бублейников - О движении - бесплатно полную версию книги (целиком) без сокращений. Жанр: Прочая детская литература, издательство Детгиз, год 1956. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Феофан Бублейников - О движении краткое содержание

О движении - описание и краткое содержание, автор Феофан Бублейников, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

О движении - читать онлайн бесплатно полную версию (весь текст целиком)

О движении - читать книгу онлайн бесплатно, автор Феофан Бублейников
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Только с большим трудом ее нашел писатель и политический деятель Цицерон, посланный в качестве правителя Сиракуз римским сенатом.

Технические изобретения Архимеда привели его к исследованию равновесия тел. Он первый дал математический вывод закона рычага. И хотя с тех пор прошло более двух тысяч лет, никто не мог сделать лучшего вывода.

Доказательство закона рычага приведено Архимедом в сочинении «О равновесии плоскостей». В нем впервые развито учение о центре тяжести.

Конечно, некоторое смутное представление об условиях равновесия имелось еще в глубокой древности. Египтяне при сооружении храмов и пирамид пользовались отвесом. Из опыта всем было известно, что на крутом косогоре колесница может опрокинуться.

Но никто не мог точно указать, при каком условии тело сохраняет равновесие: что отвес, опущенный из центра тяжести тела, не должен выйти за пределы его опоры. Если же подпереть в центре тяжести тонкую пластинку, то она останется в равновесии при любом положении.

Архимед нашел центр тяжести треугольника, трапеции и различных многоугольников.

Представим себе, что треугольник разбит на очень узкие полоски. Очевидно, что центр тяжести каждой из них лежит на ее середине. Середины же всех полосок лежат на линии, соединяющей середину стороны треугольника с противолежащим углом, — медиане.

Очевидно, что на медиане должен находиться и центр тяжести всего треугольника. Но он должен лежать и на другой медиане. Значит, пересечение двух медиан и есть центр тяжести треугольника.

Эти исследования помогли Архимеду вывести закон рычага, что не удалось ранее никому из греческих философов, занимавшихся проблемами механики.

Архимед исходил из некоторых неоспоримых допущений — аксиом — о равновесии грузов, действующих на стержень. Эти аксиомы были хорошо известны всем, кто пользовался безменом.

Из повседневного опыта известно, что равновесие грузов, подвешенных по концам стержня, зависит как от их веса, так и от расстояния до точки опоры стержня.

Очевидно, что два равных груза, подвешенных на равных расстояниях от точки опоры, уравновешивают друг друга: действительно, нет никакой причины, которая заставила бы один из них перевесить другой.

Столь же понятно, что в тех же условиях больший груз перевесит меньший.

Если же грузы равны между собой, но действуют на разных расстояниях от точки опоры, то перевесит тот, который дальше.

Безмен широко распространенный в древнем Риме Взвешивание на нем иллюстрирует - фото 13

Безмен, широко распространенный в древнем Риме. Взвешивание на нем иллюстрирует «аксиомы» Архимеда.

Вот аксиомы Архимеда, известные из повседневного опыта и положенные им в основу доказательства закона рычага.

Пусть по концам невесомого рычага подвешены грузы Р и Q , уравновешивающие друг друга.

Архимед делает предположение, что груз Р разделен на 2m , а груз Q на 2n равных между собой частей. Эти грузики распределяются равномерно вдоль невесомого стержня длиной 2 (m + n) .

Если этот стержень подперт посередине, то грузики взаимно уравновесятся, потому что по каждую сторону от точки опоры будет одинаковое число грузиков, равное m + n.

Не нарушая равновесия, можно заменить действие 2m грузиков одним грузом Р , подвешенным посередине занятого ими расстояния.

Точно так же действие других 2n грузиков можно заменить грузом Q , подвешенным посередине расстояния, занятого этими грузиками.

Легко видеть, что точка подвеса груза Р находится от точки опоры рычага на расстоянии (m + n) — m = n , а точка подвеса Q на расстоянии (m + n) — n = m от нее.

Грузы Р и Q относятся друг к другу как P: Q = 2m: 2n = m: n , то-есть их равновесие сохраняется, если расстояния точек подвеса обратно пропорциональны весам грузов.

Вывод закона двуплечего рычага был началом учения о равновесии твердых тел — статики. Пользуясь этим законом, можно вывести условия равновесия блока, ворота, зубчатого колеса и других простых машин.

Вывод закона рычага сделанный Архимедом Архимед не ограничился изучением - фото 14

Вывод закона рычага, сделанный Архимедом.

Архимед не ограничился изучением равновесия твердых тел. Он заложил и основы гидростатики. На эти исследования его навело решение одного практического вопроса.

Правитель Сиракуз, царь Гиерон, заказал мастеру отлить из золота корону. Когда заказ был выполнен, возникло подозрение, что мастер утаил часть данного ему драгоценного металла. Однако корона весила столько же, сколько было выдано золота.

Как же узнать, не заменена ли часть золота серебром?

Решение этой задачи царь возложил на Архимеда.

Труднейшие проблемы Архимед решал всегда гениально просто. Так было и в этом случае.

Чем плотнее тело, тем меньше его объем при равном весе. А об объеме легко судить по количеству вытесняемой воды при погружении в нее тела.

Значит, если в короне содержится серебро, то ее объем будет больше объема того куска золота, который был выдан мастеру. С другой стороны, он будет меньше объема куска серебра, по весу одинакового с короной.

Архимед приказал дать ему кусок золота и кусок серебра такого же веса, как корона. После этого он погрузил в сосуд с водой золото, серебро и корону, собирая отдельно воду, вытесненную каждым из этих предметов.

Оказалось, что меньше всего воды вытеснил кусок золота, больше — корона и еще больше — кусок серебра. Так Архимед доказал, что корона отлита из сплава серебра и золота.

Архимед не ограничился решением заданной ему практической задачи. Из этого опыта он вывел общий закон: «тела, которые тяжелее жидкости, будучи опущены в жидкость, погружаются все глубже, пока не достигают дна, и, пребывая в жидкости, теряют в своем весе столько, сколько весит жидкость, взятая в объеме этих тел».

Этот закон было легко проверить, подвешивая тело под чашкой весов и опуская его в воду: весы показывали, что тело становилось как бы легче на вес вытесненной воды. Это, конечно, объясняется давлением снизу вверх, оказываемым водой на погруженное в нее тело, а не действительной «потерей веса».

В наше время закон Архимеда формулируется так: жидкость действует на погруженное в нее тело с силой, направленной вертикально вверх и равной весу жидкости в объеме погруженной в нее части тела.

Продолжая исследование равновесия жидкости и плавающих тел, Архимед исходил из единственного допущения, что «при равномерном и непрерывном расположении ее частиц менее сдавленная частица вытесняется более сдавленной» и «отдельные частицы этой жидкости испытывают давление отвесно расположенной над ними жидкости».

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Феофан Бублейников читать все книги автора по порядку

Феофан Бублейников - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




О движении отзывы


Отзывы читателей о книге О движении, автор: Феофан Бублейников. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x