Александр Челноков - Общая и прикладная экология
- Название:Общая и прикладная экология
- Автор:
- Жанр:
- Издательство:Литагент Вышэйшая школа
- Год:2014
- Город:Минск
- ISBN:978-985-06-2400-0
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Александр Челноков - Общая и прикладная экология краткое содержание
Для студентов учреждений высшего образования, магистрантов, слушателей системы последипломного образования, а также руководителей, специалистов, проектировщиков, работников служб охраны окружающей среды предприятий и организаций различных отраслей.
Общая и прикладная экология - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:

Рис. 2.8. Биотический круговорот веществ: пищевая цепь (по А.Г. Банникову и др., 1985)
В детритных трофических цепях ( цепи разложения ), наиболее распространенных в лесах, большая часть продукции растений не потребляется непосредственно растительноядными животными, а отмирает, подвергаясь затем разложению сапрофитными организмами и минерализации. Таким образом, детритные трофические цепи начинаются от детрита, идут к микроорганизмам, которые им питаются, а затем к детритофагам и к их потребителям – хищникам. В водных экосистемах (особенно в эвтрофных водоемах и на больших глубинах океана) часть продукции растений и животных также поступает в детритные трофические цепи (рис. 2.9).
В целом типичные детритные пищевые цепи наших лесов можно представить следующим образом: листовая подстилка → дождевой червь → черный дрозд → ястреб-перепелятник; мертвое животное → личинки падальных мух → травяная лягушка → обыкновенный уж.

Рис. 2.9. Детритная пищевая цепь в наземной экосистеме (по Б. Небелу, 1993)
В рассмотренных пищевых цепях каждый организм представлен питающимся другим организмом какого-то одного типа. Однако в реально существующих пищевых цепях пищевые связи в экосистеме намного сложнее. Животное может питаться организмами разных типов из одной и той же пищевой цепи или из разных пищевых цепей, как, например, хищники верхних трофических уровней. Нередко животные питаются и растениями, и другими животными. Их называют всеядными . Таким образом, все известные типы пищевых цепей всегда сосуществуют в экосистеме так, что ее представители объединены многочисленными пересекающимися пищевыми связями, а вместе эти пищевые цепи образуют пищевую ( трофическую ) сеть .
Опираясь на пищевую цепь как основу функционирования экосистемы можно также объяснить случаи накопления в тканях некоторых веществ (например, синтетических ядов, пестицидов, радионуклидов), которые попадают извне в живые организмы через трофические цепи, но по мере их движения по трофической цепи не участвуют в нормальном обмене веществ организмов. Согласно правилу биологического усиления происходит примерно десятикратное увеличение концентрации загрязнителя при переходе на более высокий уровень экологической пирамиды. В частности, казалось бы незначительное повышение содержания радионуклидов в речной воде на первом уровне трофической цепи ассимилируется микроорганизмами и планктоном, затем концентрируется в тканях рыб и достигает максимальных значений у чаек. Их яйца имеют уровень радионуклидов в 5000 раз больший по сравнению с фоновым загрязнением.
Все функциональные группы (продуценты, консументы, редуценты) в экосистеме связаны, обеспечивая потоки вещества и энергии. Благодаря этому осуществляется биогенный круговорот веществ в биосфере (см. далее – гл. 3).
Совместное функционирование продуцентов, консументов и редуцентов не только поддерживает структуру и целостность экосистемы, но и оказывает существенное влияние на абиотические компоненты биотопа, формируя и поддерживая экологическую среду экосистемы.
2.3.2. Продуктивность экосистем
Продуктивность экосистем тесно связана с потоком энергии, проходящим через ту или иную экосистему. В каждой экосистеме часть приходящей энергии, попадающей в трофическую сеть, накапливается в виде органических соединений. Безостановочное производство биомассы (живой материи) – один из фундаментальных процессов биосферы.
Органическое вещество, создаваемое продуцентами в процессе фотосинтеза или хемосинтеза, называют первичной продукцией экосистемы (сообщества). Количественно ее выражают в сырой или сухой массе растений (г, кг и т) или в эквивалентном числе энергетических единиц (ккал, Дж). Первичной продукцией определяется общий поток энергии через биотический компонент экосистемы, а следовательно, и биомасса живых организмов, которые могут существовать в экосистеме.
Теоретически возможная скорость создания первичной биологической продукции определяется возможностями фотосинтетического аппарата растений. Лишь часть энергии света, получаемой зеленой поверхностью, может быть использована растениями. Из коротковолнового излучения Солнца только 44 % относится к фотосинтетически активной радиации (ФАР), свету по длине волны, пригодному для фотосинтеза. Максимально достигаемый в природе КПД фотосинтеза составляет 10–12 % энергии ФАР. КПД фотосинтеза в 5 % считается очень высоким для этого процесса. В целом по земному шару усвоение растениями солнечной энергии не превышает 0,1 % из-за ограничения фотосинтетической активности растений множеством факторов, таких как недостаток тепла и влаги, неблагоприятные физические и химические свойства почвы и т. д. Средний коэффициент использования энергии ФАР для территории России равен 0,8 %, на европейской части страны составляет 1,0–1,2 %, а в восточных районах, где условия увлажнения менее благоприятны, не превышает 0,4–0,8 %.
Первичная продуктивность подразделяется на чистую и валовую.
Чистая первичная продуктивность – запасаемое автотрофными организмами органическое вещество, которое идет на рост фитомассы. Такая продуктивность выражается как разность между валовой первичной продуктивностью и количеством органического вещества, израсходованного на поддержание системы (дыхание и пр.). Это энергия, которую могут использовать организмы следующих трофических уровней.
Валовая первичная продуктивность – валовой фотосинтез, или общее количество органического вещества, продуцируемого автотрофами в процессе фотосинтеза в течение определенного периода времени, включая ту органику, которая расходуется на дыхание.
Общее количество живого вещества, произведенного совокупностью всех автотрофных и гетеротрофных организмов на единицу площади за единицу времени (обычно за год) называют вторичной валовой продуктивностью .
Вторичную продукцию вычисляют отдельно для каждого трофического уровня, так как прирост массы на каждом из них происходит за счет энергии, поступающей с предыдущего. Гетеротрофы, включаясь в трофические цепи, в конечном итоге живут за счет чистой первичной продукции сообщества. Полнота ее расхода в разных экосистемах различна. Постепенное увеличение общей биомассы продуцентов отмечается, если скорость изъятия первичной продукции в цепях питания отстает от темпов прироста растений.
Читать дальшеИнтервал:
Закладка: