А. Красько - Схемотехника аналоговых электронных устройств
- Название:Схемотехника аналоговых электронных устройств
- Автор:
- Жанр:
- Издательство:Томский государственный университет систем управления и радиоэлектроники
- Год:2005
- Город:Томск
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
А. Красько - Схемотехника аналоговых электронных устройств краткое содержание
В учебном пособии рассмотрены теоретические основы и принципы действия аналоговых устройств на биполярных и полевых транзисторах. Анализируются основные схемы, используемые в аналоговых трактах типовой радиоэлектронной аппаратуры, приводятся расчетные формулы, позволяющие определить элементы принципиальных схем этих устройств по требуемому виду частотных, фазовых и переходных характеристик. Излагаются основы построения различных функциональных устройств на основе операционных усилителей. Рассмотрены так же ряд специальных вопросов с которыми приходится сталкиваться разработчикам аналоговых электронных устройств – оценка нелинейных искажений, анализ устойчивости, чувствительности и др.
Пособие предназначено для студентов, обучающихся по направлениям подготовки 552500, 654200 – «Радиотехника», 654100 – «Электроника и микроэлектроника», и может быть полезно для преподавателей и научных работников.
Схемотехника аналоговых электронных устройств - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
R н ≈≈ R н · n ²,
где n — коэффициент трансформации, n = U 1/ U 2.
Данный каскад находит ограниченное применение в современной схемотехнике УМ из-за ряда существенных недостатков:
◆ малого КПД;
◆ больших частотных искажений за счет трансформатора;
◆ больших НИ за счет тока подмагничивания трансформатора;
◆ невозможности реализации в виде ИМС.
Трансформаторные УМ подробно описаны в классических учебниках по УУ, например, в[5,6].
4.4. Двухтактные УМ
Двухтактные УМ ввиду возможности использования режимов АВ, В, С и D характеризуются лучшими энергетическими показателями. На рисунке 4.5 приведена схема двухтактного УМ с трансформаторной связью .

Рисунок 4.5. Двухтактный трансформаторный УМ
При работе данного УМ в режиме класса В, цепь резистора R б2 отсутствует. Трансформатор Tp 1 осуществляет согласование входа УМ с источником сигнала, трансформатор Tp 2 согласует выходное сопротивление УМ с сопротивлением нагрузки. Трансформатор Tp 1 выполняет еще и функции фазоинвертора (см. на рисунке 4.5 фазировку его обмоток).
Усиление сигнала в рассматриваемом УМ происходит в два такта работы устройства. Первый такт сопровождается усилением положительной полуволны гармонического сигнала с помощью транзистора VT 2, второй — усилением отрицательной полуволны гармонического сигнала с помощью VT 1.
Графический и энергетический расчет двухтактного трансформаторного УМ двухтактного достаточно полно представлены в классических учебниках по усилительным устройствам, например, [5,6]. Энергетический расчет показывает, что КПД такого УМ реально достигает порядка 70%, что примерно в 1,5 раза больше чем у однотактных УМ.
При выборе типа для УМ следует учитывать то обстоятельство, что на коллекторе закрытого транзистора действует напряжение, равное примерно 2· E к , что объясняется суммированием E к и напряжения на секции первичной обмотки Tp 2.
Вследствие того, что каждый транзистор пропускает ток только для одной полуволны гармонического сигнала, режим класса В характеризуется лучшим использованием транзистора по току.
Поскольку токи в секциях обмоток трансформаторов протекают в разных направлениях, отсутствует подмагничивание их сердечников. Отметим так же, что в двухтактном УМ исключена (при симметрии плеч УМ) паразитная ОС по источнику питания и в выходном сигнале отсутствуют четные гармонические составляющие.
Как уже отмечалось выше, отсутствие тока покоя в УМ класса В приводит к появлению значительных НИ. Вследствие нелинейности входных ВАХ, выходной сигнал в двухтактном УМ класса В имеет переходные искажения типа "ступеньки" (рисунок 4.6).

Рисунок 4.6. Искажения сигнала в двухтактном трансформаторном УМ
Уменьшение НИ возможно путем перехода к режиму класса АВ (см. рисунки 4.2 и 4.6). Т.к. токи покоя в режиме класса АВ малы, то они практически не влияют на энергетические показатели УМ.
Поскольку трансформатор является весьма "неудобным" элементом при выполнении УМ в виде ИМС и вносит существенные искажения в выходной сигнал усилителя, УМ с трансформаторами находят ограниченное применение в современной схемотехнике УУ.
В современной электронике наиболее широко применяются бестрансформаторные двухтактные УМ . Такие УМ имеют хорошие массогабаритные показатели и просто реализуются в виде ИМС.
Возможно построение двухтактных бестрансформаторных УМ по структурной схеме, показанной на рисунке 4.7.

Рисунок 4.7. Структурная схема УМ с использованием ФИ
Здесь ФИ — фазоинверсный каскад предварительного усиления (драйвер), УМ — двухтактный каскад усиления мощности.
В качестве драйвера может использоваться каскад с разделенной нагрузкой (рисунок 4.8).

Рисунок 4.8. Каскад с разделенной нагрузкой
Можно показать, что при ,
.
Несмотря на такие достоинства, как простота и малые частотные и нелинейные искажения, каскад с разделенной нагрузкой находит ограниченное применение из-за малого K 0 и разных R вых , что приводит к несимметричности АЧХ выходов в областях ВЧ и НЧ.
Гораздо чаще применяются ФИ на основе дифференциального каскада (ДК) (рисунок 4.9).

Рисунок 4.9. Фазоинверсный каскад на основе ДК
ДК будут рассмотрены далее, пока же отметим, что через R э будет протекать удвоенный ток покоя транзисторов VT1 и VT2 и, следовательно, номинал резистора R э в схеме фазоинверсного каскада уменьшается вдвое по сравнению с расчетом каскада с ОЭ.
При рассмотрении, например, левой половины фазоинверсного каскада видно, что в цепи эмиттера транзистора VT1 (включенного с ОЭ) присутствует R э и параллельно ему входное сопротивление транзистора VT2 (включенного с ОБ), R вхОБ ≈1/ S 0.
Обычно берут R э >> R вхОБ (или заменяют R э эквивалентом высокоомного сопротивления в виде источника стабильного тока, который будет рассмотрен в дальнейшем вместе с ДК), поэтому можно подставить вместо R ос в выражение для глубины ПООСТ (см. подраздел 3.2) R вхОБ :
A = 1 + S 0· R вхОБ ≈ 1 + S 0/ S 0= 2
Следовательно, можно считать, что в фазоинверсном каскаде присутствует ПООСТ с глубиной, равной двум. Принимая во внимание, что относительно эмиттера VT2 транзистор VT1 включен по схеме с ОК, нетрудно показать, что при идентичности параметров транзисторов K 01≈ K 02≈ K 0/2, т.е. коэффициенты передачи по напряжению плеч фазоинверсного каскада на основе ДК равны половине коэффициента передачи каскада с ОЭ.
Довольно широко применяется ФИ на комплиментарных транзисторах, вариант схемы которого представлен на рисунке 4.10.

Рисунок 4.10. ФИ на комплиментарных БТ
Читать дальшеИнтервал:
Закладка: