А. Красько - Схемотехника аналоговых электронных устройств
- Название:Схемотехника аналоговых электронных устройств
- Автор:
- Жанр:
- Издательство:Томский государственный университет систем управления и радиоэлектроники
- Год:2005
- Город:Томск
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
А. Красько - Схемотехника аналоговых электронных устройств краткое содержание
В учебном пособии рассмотрены теоретические основы и принципы действия аналоговых устройств на биполярных и полевых транзисторах. Анализируются основные схемы, используемые в аналоговых трактах типовой радиоэлектронной аппаратуры, приводятся расчетные формулы, позволяющие определить элементы принципиальных схем этих устройств по требуемому виду частотных, фазовых и переходных характеристик. Излагаются основы построения различных функциональных устройств на основе операционных усилителей. Рассмотрены так же ряд специальных вопросов с которыми приходится сталкиваться разработчикам аналоговых электронных устройств – оценка нелинейных искажений, анализ устойчивости, чувствительности и др.
Пособие предназначено для студентов, обучающихся по направлениям подготовки 552500, 654200 – «Радиотехника», 654100 – «Электроника и микроэлектроника», и может быть полезно для преподавателей и научных работников.
Схемотехника аналоговых электронных устройств - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Рассмотренные выше параметры и характеристики ОУ описывают его при отсутствии цепей ООС. Однако, как отмечалось, ОУ практически всегда используется с цепями ООС, которые существенно влияют на все его показатели.
6.3. Инвертирующий усилитель
Наиболее часто ОУ используется в инвертирующих и неинвертирующих усилителях. Упрощенная принципиальная схема инвертирующего усилителя на ОУ приведена на рисунке 6.7.

Рисунок 6.7. Инвертирующий усилитель на ОУ
Резистор R 1 представляет собой внутреннее сопротивление источника сигнала E г , посредством R ос ОУ охвачен ∥ООСН.
При идеальном ОУ разность напряжений на входных зажимах стремиться к нулю, а поскольку неинвертирующий вход соединен с общей шиной через резистор R 2, то потенциал в точке aтоже должен быть нулевым ("виртуальный нуль", "кажущаяся земля"). В результате можем записать: I г = I ос , т.е. E г / R 1=– U вых / R ос . Отсюда получаем:
K U инв = U вых / E г = – R ос / R 1,
т.е. при идеальном ОУ K U инв определяется отношением величин внешних резисторов и не зависит от самого ОУ.
Для реального ОУ необходимо учитывать его входной ток I вх , т.е. I г = I ос + I вх или ( E г – U вх )/ R 1=( U вх – U вых )/ R ос + U вх / U вхОУ , где U вх — напряжение сигнала на инвертирующем входе ОУ, т.е. в точке a. Тогда для реального ОУ получаем:

Нетрудно показать, что при глубине ООС более 10, т.е. K u ОУ / K U инв = F >10, погрешность расчета K U инв для случая идеального ОУ не превышает 10%, что вполне достаточно для большинства практических случаев.
Номиналы резисторов в устройствах на ОУ не должны превышать единиц мегом, в противном случае возможна нестабильная работа усилителя из-за токов утечки, входных токов ОУ и т.п. Если в результате расчета величина R ос превысит предельное рекомендуемое значение, то целесообразно использовать Т-образную цепочку ООС, которая при умеренных номиналах резисторов позволяет выполнить функцию эквивалента высокоомного R ос (рисунок 6.7б) . В этом случае можно записать:

На практике часто полагают, что R ос 1= R ос 2>> R ос 3, а величина R 1 обычно задана, поэтому R ос 3 определяется достаточно просто.
Входное сопротивление инвертирующего усилителя на ОУ R вх инв имеет относительно небольшое значение, определяемое параллельной ООС:
R вх инв = R 1+( R ос / K u ОУ + 1)∥ R вхОУ ≈ R 1,
т.е. при больших K u ОУ входное сопротивление определяется величиной R 1.
Выходное сопротивление инвертирующего усилителя R вых инв в реальном ОУ отлично от нуля и определяется как величиной R вых ОУ , так и глубиной ООС F. При F>10 можно записать:
R вых инв = R вых ОУ / F = R вых ОУ / K U инв / K u ОУ .
С помощью ЛАЧХ ОУ можно представить частотный диапазон инвертирующего усилителя (см. рисунок 6.6), причем
f вОС = f T / K U инв .
В пределе можно получить K U инв =1, т.е. получить инвертирующий повторитель. В этом случае получаем минимальное выходное сопротивление усилителя на ОУ:
R вых пов = R вых ОУ / K u ОУ .
В усилителе на реальном ОУ на выходе усилителя при U вх =0 всегда будет присутствовать напряжение ошибки U ош , порождаемое U см и Δ I вх . С целью снижения U ош стремятся выровнять эквиваленты резисторов, подключенных к входам ОУ, т.е. взять R 2= R 1∥ R ос (см. рисунок 6.7а). При выполнении этого условия для K U инв >10 можно записать:
U ош ≈ U смK U инв + Δ I вхR ос .
Уменьшение U ош возможно путем подачи дополнительного смещения на неинвертирующий вход (с помощью дополнительного делителя) и уменьшения номиналов применяемых резисторов.
На основе рассмотренного инвертирующего УПТ возможно создание усилителя переменного тока путем включения на вход и выход разделительных конденсаторов, номиналы которых определяются исходя из заданного коэффициента частотных искажений M н (см. подраздел 2.5).
6.4. Неинвертирующий усилитель
Упрощенная принципиальная схема неинвертирующего усилителя на ОУ приведена на рисунке 6.8.

Рисунок 6.8. Неинвертирующий усилитель на ОУ
Нетрудно показать, что в неинвертирующем усилителе ОУ охвачен ПООСН. Поскольку U вх и U ос подаются на разные входы, то для идеального ОУ можно записать:
U вх = U выхR 1/( R 1+ R ос ),
откуда коэффициент усиления по напряжению неинвертирующего усилителя:
K U неинв = 1 + R ос / R 1,
или
K U неинв = 1 + | K U инв |.
Для неинвертирующего усилителя на реальном ОУ полученные выражения справедливы при глубине ООС F>10.
Входное сопротивление неинвертирующего усилителя R вх неинв велико и определяется глубокой последовательной ООС и высоким значением R вхОУ :
R вх неинв = R вхОУ · F = R вхОУ · K U ОУ / K U неинв .
Выходное сопротивление неинвертирующего усилителя на ОУ определяется как для инвертирующего, т.к. в обоих случаях действует ООС по напряжению:
R вых неинв = R выхОУ / F = R выхОУ / K U неинв / K U ОУ .
Расширение полосы рабочих частот в неинвертирующем усилителе достигается также, как и в инвертирующем, т.е.
f вОС = f T / K U неинв .
Для снижения токовой ошибки в неинвертирующем усилителе, аналогично инвертирующему, следует выполнить условие:
R г = R 1∥ R ос .
Неинвертирующий усилитель часто используют при больших R г (что возможно за счет большого R вх неинв ), поэтому выполнение этого условия не всегда возможно из-за ограничения на величину номиналов резисторов.
Наличие на инвертирующем входе синфазного сигнала (передаваемого по цепи: неинвертирующий вход ОУ ⇒ выход ОУ ⇒ R ос ⇒ инвертирующий вход ОУ) приводит к увеличению U ош , что является недостатком рассматриваемого усилителя.
При увеличении глубины ООС возможно достижение K U неинв =1, т.е. получение неинвертирующего повторителя, схема которого приведена на рисунке 6.9.

Рисунок 6.9. Неинвертирующий повторитель на ОУ
Читать дальшеИнтервал:
Закладка: