Денис Соломатин - mixOmics для гуманитариев

Тут можно читать онлайн Денис Соломатин - mixOmics для гуманитариев - бесплатно ознакомительный отрывок. Жанр: Программы, год 2021. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Денис Соломатин - mixOmics для гуманитариев краткое содержание

mixOmics для гуманитариев - описание и краткое содержание, автор Денис Соломатин, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Тематика посвященного основам статистической обработки педагогической информации учебного пособия оказалась на редкость востребованной и актуальной, что послужило стимулом к написанию продолжения. Учебное пособие предназначено для бакалавров, обучающихся по направлению подготовки «Математическое образование» интересы которых лежат в области статистической обработки социальной и педагогической информации. Из отличительных особенностей R хорош тем, что бесплатен и установлен на серверах Google Cloud и ИМ СО РАН, а значит позволяет задействовать вычислительную мощь современных суперкомпьютеров. Кроме того, статистический анализ большого числа переменных на сегодняшний день лучше всего реализован в его дополнительном пакете mixOmics, а в современных реалиях R позволяет неподготовленному читателю разворачивать веб-сервер для решения задач собственной онлайн-школы, на открытие которой всё больше нас вдохновляют современные реалии.

mixOmics для гуманитариев - читать онлайн бесплатно ознакомительный отрывок

mixOmics для гуманитариев - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Денис Соломатин
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

• Дисперсия: измеряет уровень распылённости одной переменной. Как правило оценивается дисперсия целых компонентов, а не считываемых переменных. Высокая дисперсия указывает на то, что точки данных очень отличаются от среднего, и друг от друга (разбросаны).

• Ковариация: измеряет прочность взаимосвязи между двумя переменными, то есть являются ли они ковариантами друг друга. Высокое значение ковариации указывает на сильную связь, например, посещаемость и успеваемость у отдельных обучающихся часто различаются примерно одинаково; в общем случае, самые низкие и самые высокие значения коэффициента ковариации не имеют нижнего или верхнего предела.

• Корреляция: нормализованная версия ковариации, значения которой ограничены отрезком от -1 до 1.

• Линейная комбинация: разные переменные могут объединяться в одну путем умножения каждой из них на коэффициент и сложения полученных результатов. Линейная комбинация успеваемость a и посещаемости b может быть 2∙a – 1,5∙b с коэффициентами 2 и -1,5, присвоенных успеваемости и посещаемости соответственно.

• Компонент: искусственная переменная, построенная из линейной комбинации наблюдаемых переменных в данном наборе данных. Переменные коэффициенты оптимально определяются на основе какого-то статистического критерия. Например, в основном компоненте анализа определяются коэффициенты (основного) компонента, с тем чтобы максимизировать дисперсию компонента.

• Нагрузки: переменные коэффициенты, используемые для определения компонента.

• Визуализация образца: представление образцов, проецируемых в небольшом пространстве, охватываемом (определяемом) компонентами. Координаты образцов определяются значениями или вычисленными баллами компонентов.

• Изображение круга корреляции: представление переменных в пространстве, охватываемом компонентами. Каждая переменная координата определяется как корреляция между исходным переменным значением и каждым компонентом. Диаграмма с корреляционным кругом позволяет визуализировать корреляцию между переменными – отрицательную или положительную корреляцию, определяемую косинусом угла между центром круга и каждой переменной точкой, а также вклад каждой переменной в каждый компонент, определяемый абсолютным значением координат по каждому компоненту. Для такого толкования данные должны быть сосредоточены и масштабированы, что подразумевается по умолчанию в большинстве методов, за исключением PCA. Подробная информация об этом наглядном представлении информации будет представлена в соответствующем разделе ниже.

• Неконтролируемый анализ: метод, который не учитывает какие-либо известные группы выборки, является исследовательским. Примерами неконтролируемых методов являются – метод главных компонент (PCA), метод проекций на скрытые структуры (PLS), а также канонический анализ корреляции (CCA).

• Контролируемый анализ: метод включает вектор, указывающий на принадлежность класса в каждой выборки. Цель его состоит в том, чтобы различать выборочные группы и выполнять прогнозирование для класса выборки. Примерами контролируемых методов являются дискриминантный анализ проекций на скрытые компоненты (PLS-DA), анализ интеграции данных для обнаружения маркеров с использованием скрытых компонентов (DIAB), а также многомерный интегративный метод определения воспроизводимых сигнатур в независимых экспериментах на разных платформах (MINT).

Перечень широко используемых методов mixOmics, которые будут подробно описаны в соответствующих главах ниже, за исключением CCA и MINT, можно представить следующей таблицей типов и объема данных, который они могут обрабатывать:

Методы реализованные в mixOmics подробно описаны в разных публикациях - фото 2

Методы, реализованные в mixOmics, подробно описаны в разных публикациях, обширный список которых постоянно пополняется и может быть найден в открытых источниках.

В следующей таблице приведён список методов mixOmics, наличие разрежения в которой указывает на методы, предполагающие осуществление выбора переменных:

Основные функции и параметры каждого метода сведены в следующей таблице - фото 3

Основные функции и параметры каждого метода сведены в следующей таблице:

Каждый раздел посвященный описанию того или иного метода излагается по - фото 4

Каждый раздел, посвященный описанию того или иного метода, излагается по следующему плану:

1. Тип педагогического вопроса, на который нужно ответить.

2. Краткое описание иллюстративного набора данных.

3. Принцип метода.

4. Быстрый запуск метода с основными функциями и аргументами.

5. Чтобы идти дальше: настраиваемые опции, дополнительные графические построения и настройки параметров.

6. Вопросы и ответы.

Глава 1. Первые шаги

Как путь в тысячу миль начинается с первого шаг, так и использование любого пакета R начинается с его установки. Во-первых, можно скачать последнюю версию mixOmics от Bioconductor следующей командой:

if (!requireNamespace("BiocManager", quietly = TRUE))

install.packages("BiocManager")

BiocManager::install("mixOmics")

Кроме того, можно установить последнюю версию пакета с GitHub, но для этого понадобится предварительная установка пакета remotes:

BiocManager::install("remotes")

BiocManager::install("mixOmicsTeam/mixOmics")

Пакет mixOmics напрямую импортирует следующие пакеты: igraph, rgl, ellipse, corpcor, RColorBrewer, plyr, parallel, dplyr, tidyr, reshape2, methods, matrixStats, rARPACK, gridExtra. Если возникнут затруднения при установке пакета rgl, то нужно будет дополнительно установить программное обеспечение X'quartz.

Загрузить установленный пакет можно следующей командой:

library(mixOmics)

Убедитесь, что при загрузке пакета не возникло ошибки, особенно для упомянутой выше библиотеки rgl. В примерах, которые будут приведены далее, используются данные, являющиеся частью пакета mixOmics. Чтобы загрузить свои собственные данные, проверьте установлен ли рабочий каталог, а затем считайте данные из формата .txt или .csv, либо с помощью пункта меню импортирования данных в RStudio, либо через одну из следующих командных строк:

# из файла csv

data <���– read.csv("имя_файла.csv", row.names = 1, header = TRUE)

# из файла txt

data <���– read.table("имя_файла.txt", header = TRUE)

Для получения более подробной информации о аргументах, используемых для настройки параметров этих функций, введите ?read.csv или ?read.table в консоли R.

Каждый анализ должен выполняться в следующем порядке:

1. Запустите выбранный метод анализа.

2. Выполните графическое представление образцов.

3. Выполните графическое представление переменных.

Затем используйте критическое мышление и дополнительные функции инструментов визуализации, чтобы разобраться в полученных данных. Некоторые из вспомогательных инструментов будут описаны в следующих главах.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Денис Соломатин читать все книги автора по порядку

Денис Соломатин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




mixOmics для гуманитариев отзывы


Отзывы читателей о книге mixOmics для гуманитариев, автор: Денис Соломатин. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x