Александр Тарво - Использование NuMega DriverStudio для написания WDM-драйверов
- Название:Использование NuMega DriverStudio для написания WDM-драйверов
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Александр Тарво - Использование NuMega DriverStudio для написания WDM-драйверов краткое содержание
Использование NuMega DriverStudio для написания WDM-драйверов - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Ответ прост. Можно отобразить диапазон адресов устройства как на адресное пространство системы, так и на адресное пространство пользовательского процесса. Соответственно различаться будет и способ доступа к памяти устройства из приложения пользователя: в первом случае буфер с данными для записи или чтения будет передаваться драйверу из приложения, а в драйвере эти данные будут пересылаться устройству. Во втором случае приложение будет писать и читать данные в выделенный ему участок памяти, который находится в адресном пространстве процесса. Какой механизм выбрать — дело разработчика драйвера.
Объекты, представляющие адресное пространство периферийных устройств, представлены классами KPeripherialAdress, KIoRange, KMemoryRange, KIoregister, KMemoryRegister. KPeripherialAdress является базовым классом для большинства остальных классов управления диапазонами памяти и портов ввода-вывода. Сам класс KperipherialAdress в основном, не используется. Используются, в основном, следующие его подклассы:
• KIoRange — диапазон адресов ввода-вывода. Данный класс отображает диапазон адресов портов В/В из адресного пространства какой-либо из шин в адресное пространство процессора. При использовании класса KIoRange можно читать и записывать в порты 8, 16, и 32-битные значения.
• KIoRegisterявляется альтернативным путем доступа к портам ввода-вывода. В виде экземпляра KIoRegister может быть пердставлен отдельный порт-ввода вывода в диапазоне адресов. Фактически, KIoRange — это несколько экземпляров класса KIoRegister, объединенных в массив. Создать экземпляр KioRegister можно, используя как стандартный конструктор, так и используя оператор [] класса KIoRange, например:
KIoRange m_range;
…
KIoRegister m_reg = m_range[6];
…
Применение KIoRegister упрощет процесс программирования и улучшает читабельность программы.
• KMemoryRangeиспользуется для отображения диапазона адресов памяти из адресного пространства шины в адресное пространство процессора (адресное пространство системы). После того, как память будет отображена, драйвер должен использовать методы доступа к памяти, позволяющие оперировать 8, 16 и 32– битными значениями.
• KMemoryRegisterаналогичен KIoRegister, за исключением того, что в данном случае он представляет из себя отдельную ячейку памяти в адресном пространстве устройства.
• KMemoryToProcessMapиспользуется для отображения диапазона адресов памяти шины в адресное пространство пользовательского процесса. Это может оказаться очень удобным: пользователь может напрямую общаться с памятью устроства в программе, как с обычным буфером. Впрочем, такое отображение следует применять с большой осторожностью: возможна ситуация, когда пользователь запустит несколько экземпляров программы, и все они начнут работать с памятью устройства одновременно. Вряд ли стоит объяснять, к чему это может привести.
Стоит отметить, что немалая часть устройств могут общаються со своей памятью только словами. Длина слова зависит от устройства, и может колебаться в широких пределах. Обычно для PCI-устройств — 32 бит.
В документации настоятельно рекомендуется использовать только эти классы для управления оборудованием. Это связано с возможной переносимостью драйвера на другие платформы. При использовании этих классов, которые, в свою очередь, используют функции DDK для доступа к оборудованию, процесс портирования пройдет безболезненно, т.к. для доступа к устройству будет использован HAL. Если же программист будет пытаться управлять устройствами самостоятельно, то драйвер придется переписывать при переносе на другую платформу.
Есть еще одна причина, по которой стоит использовать эти классы: ведь с ними разрабатывать драйвер намного проще!
Как и все Windows–программы, драйвера являются частью многозадачной операционной системы, в которой выполняется множество процессов и потоков. Драйвер, как и программа, также может содержать несколько потоков. При этом, естественно, возникает проблема синхронизации работы этих потоков, совместного доступа к данным и т.п. Особенно актуальной эта проблема становится в многопроцессорной системе. Windows 2000 предназначается для работы в многопроцессорных системах, и если пренебречь синхронизацией при разработке драйвера, то это может повлечь за собой неприятные последствия.
Для решения задач синхронизации WDM (и, соответственно, DriverWorks) предлагает различные средства. Простейшим из объектов синхронизации является защелка (Spin Lock), представленная классом KSpinLock. Принцип действия защелки очень прост: чтобы запретить любому другому потоку в системе доступ к данным, нужно вызывать метод Lock защелки. Любой поток, пытающийся получить доступ к заблокированным данным, уснет. Чтобы снять блокировку, нужно вызвать метод Unlock.
Класс диспетчера KDispatcherObjectявляется суперклассом для нескольких важных классов синхронизации. Эти классы управляют планировщиком Windows и позволяют синхронизировать как работу драйверов, так и работу приложения пользователя и драйвера. Все классы, порожденные от KDispatcherObject, имеют два важных отличия:
• С объектом диспетчера связана логическая переменная–флажок, который может находиться в двух состояниях: сигнализировать (TRUE) и молчать (FALSE).
• Если поток вызовет метод Wait диспетчера, он приостановится до тех пор, пока диспетчер не перейдет в состояние "сигнализирует".
При работе с объектами диспетчера и его подклассов следует иметь в виду, что нельзя блокировать поток при обработке прерывания. Последствия будут фатальными.
Подклассы класса KDispatcherObject:
KEvent — используется для синхронизации работы потоков. Kevent почти не отличается от объекта диспетчера.
KSemaphoreинкапсулирует системный объект семафора. Семафор отличается от объекта события тем, что имеет счетчик. Семафор сигнализирует в том случае, если счетчик больше нуля. Семафоры могут быть полезны, например, при управлении несколькими пото– ками.
KTimer — таймер. При создании таймера его флажок находится в состоянии "молчит". Временной интервал таймера задается функцией Set с точностью до 100 нс. На практике таймер устойчиво работает с временем ожидания >= 10 мс. Когда пройдет указанный промежуток времени, таймер перейдет в состояние "сигнализирует". Подклассом Ktimer является класс KTimedCallBack. В нем по истечении промежутка времени выполняется вызов отложенной процедуры (DPC).
KSystemThreadпозволяет создать новый поток в драйвере. Потоки в драйвере используются в разных целях. В основном это — поллинг медленных устройств и работа на многопроцессорных системах. Для запуска потока следует создать функцию, которая станет функцией потока и вызвать метод Start. Для уничтожения потока — метод Terminate. При работе с потоками можно использовать все упомянутые выше классы синхронизации.
Читать дальшеИнтервал:
Закладка: