Дж. Кеоун - OrCAD PSpice. Анализ электрических цепей
- Название:OrCAD PSpice. Анализ электрических цепей
- Автор:
- Жанр:
- Издательство:ДМК Пресс, Питер
- Год:2008
- Город:Москва, Санкт-Петербург
- ISBN:978-5-9706-0009-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Дж. Кеоун - OrCAD PSpice. Анализ электрических цепей краткое содержание
Это руководство по работе в программе OrCAD Pspice предназначено для всех, кто знаком с основными разделами электротехники. При постепенном усложнении задач объясняются все необходимые аспекты работы в OrCAD Pspice, что позволяет творчески применять их при дальнейшем анализе электрических и электронных схем и устройств. Рассмотрение материала начинается с анализа цепей постоянного тока, продолжается анализом цепей переменного тока, затем переходит к различным разделам полупроводниковой электроники. Информация изложена таким образом, чтобы каждый, кто изучал или изучает определенный раздел электротехники, мог сразу же использовать OrCAD Pspice на практике. Больше внимания, чем в других книгах по этой теме, уделяется созданию собственных моделей и использованию встроенных моделей схем в OrCAD Pspice.
На прилагаемом к книге DVD вы найдете демонстрационную версию программы OrCAD PSpice Student Edition 9, которой можно пользоваться свободно. Кроме того, на диске размещена версия OrCAD 10.5 Demo Release, с которой можно работать в течение 30 дней после установки на компьютер.
OrCAD PSpice. Анализ электрических цепей - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Fourier Analysis; Decomposition of Polynomial
Vin 1 0 sin(0 1 1000); arguments are offset, peak, and frequency
Rin 1 0 1MEG
E 2 0 poly(1) 1,0 1 1 1; last 3 1s are for k0, k1, k2
Rout 2 0 1MEG
.TRAN 1us 1ms
.FOUR 1000 V(1) V(2)
.PROBE
.END
NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE
( 1) 0.0000 ( 2) 1.0000
FOURIER COMPONENTS OF TRANSIENT RESPONSE V(1)
DC COMPONENT = 2.936647E-08
HARMONIC FREQUENCY FOURIER NORMALIZED PHASE NORMALIZED
NO (HZ) COMPONENT COMPONENT (DEG) PHASE (DEG)
1 1.000E+03 1.000E+00 1.000E+00 1.115E-06 0.000E+00
2 2.000E+03 1.994E-08 1.994E-08 -9.308E+01 -9.308E+01
3 3.000E+03 7.381E-09 7.381E-09 -9.083E+01 -9.083E+01
4 4.000E+03 4.388E-09 4.388E-09 -8.993E+01 -8.993E+01
5 5.000Е+03 3.134Е-09 3.134Е-09 -9.107Е+01 -9.107Е+01
6 6.000E+03 1.525E-09 1.525E-09 -6.706E+01 -6.706E+01
7 7.000E+03 1.511E-09 1.511E-09 -1.392E+02 -1.392E+02
8 8.000E+03 1.237E-09 1.237E-09 -3.990E+01 -3.990E+01
9 9.000E+03 7.642E-10 7.642E-10 3.320E+01 3.320E+01
TOTAL HARMONIC DISTORTION = 2.208405E-06 PERCENT
FOURIER COMPONENTS OF TRANSIENT RESPONSE V(2)
DC COMPONENT = 1.500000E+00
HARMONIC FREQUENCY FOURIER NORMALIZED PHASE NORMALIZED
NO (HZ) COMPONENT COMPONENT (DEG) PHASE (DEG)
1 1.000E+03 1.000E+00 1.000E+00 -2.888E-07 0.000E+00
2 2.000E+03 5.000E-01 5.000Е-01 -9.000E+01 -9.000E+01
3 3.000E+03 7.971E-08 7.971E-08 -1.546E+02 -1.546E+02
4 4.000E+03 5.126Е-08 5.126Е-08 -1.439E+02 -1.439E+02
5 5.000E+03 3.918E-08 3.918E-08 -1.420E+02 -1.420E+02
6 6.000E+03 3.327E-08 3.327E-08 -1.299E+02 -1.299E+02
7 7.000Е+03 3.606E-08 3.606E-08 -1.268Е+02 -1.268E+02
8 8.000E+03 2.889E-08 2.859E-08 -1.316E+02 -1.316E+02
9 9.000E+03 2.584E-08 2.584E-08 -1.189Е+02 -1.189Е+02
TOTAL HARMONIC DISTORTION = 4.999939E+01 PERCENT
Рис. 7.3. Выходной файл с результатами анализа схемы на рис. 7.1
Первая гармоника представляет собой основную гармонику при f =1 кГц. Показана амплитуда первой гармоники ряда Фурье и ее фаза 2.4Е-7 (тоже почти ноль). Если считать, что этот компонент выражен формулой
b n sin( nx ),
то это означает, что b 1=1, n =1, где индекс 1 соответствует основной частоте. Другие гармоники могут игнорироваться, так как их амплитуды на много порядков меньше основной гармоники. Именно основная гармоника отражена на графике V(1) в Probe, получена она из данных на рис. 7.3.
Другая таблица компонентов Фурье на рис. 7.3 относится к V(2). При просмотре различных гармоник обратите внимание, что имеется постоянная составляющая в 1,5 В. Почему 1,5 В? Составляющая k 0=1 В дает только часть этого значения, остальные же 0,5 В связаны со второй гармоникой. Теория показывает, что при гармоническом искажении по второй гармонике в выходном напряжении кроме собственно второй гармоники с амплитудой b 2появляется и связанная с искажениями по второй гармонике постоянная составляющая со значением b 0= b 2. Амплитуда основной частоты в разложении равна b 1=1 В, амплитуда второй гармоники b 2=0,5 В, ее фазовый угол составляет -90°. Более высокие гармоники имеют намного меньшую величину и их можно не учитывать.
В качестве упражнения по гармоническому синтезу вы можете нарисовать отдельные гармоники и сложить их, чтобы предсказать результат, который вы получите в Probe для V(2). Не забудьте учесть постоянную составляющую и соответствующие амплитуды и фазы для основной и второй гармоник. После того как вы нарисуете результирующее колебание, вам, несомненно, будет приятно узнать, что PSpice может сделать эту нудную работу за вас.
Сложение гармоник и разложение на гармонические составляющие
Создадим новый входной файл, соответствующий рис. 7.4, на котором к схеме рис. 7.1 добавлены еще два независимых источника тока.
Мы использовали два источника только для того, чтобы вы могли получить основную и вторую гармоники на одном графике с выходным напряжением. Дополнительные источники питают подключенный параллельно 1-омный резистор. Такое изменение первоначальной схемы совсем не обязательно, просто оно оказалось удобным при данном наборе параметров. Новый входной файл представляет собой расширение предыдущего файла и выглядит следующим образом:
Fourier Analysis; Decomposition of Polynomial
Vin 1 0 sin(0 1 1000);аргументы - смещение, амплитуда и частота
Rin 1 0 1MEG
Е 2 0 poly(1) 1,0 1 1 1; последние 3 записи for k0, k1, k2
Rout 2 0 1MEG
i1 0 3 sin(1 1 1000)
i2 0 3 sin(0.5 0.5 2000 0 0 -90)
r 3 0 1
.TRAN 1us 1ms
.FOUR 1000 V(1) V(2) V(3)
.PROBE
.END

Рис. 7.4. Схема для анализа сложения гармоник и разложения в ряд Фурье
Перед выполнением анализа подробно рассмотрим описания для i 1и i 2. Для гармонического синтеза используются результаты разложения в ряд Фурье из предыдущей задачи. Убедитесь, что вы понимаете смысл всех параметров; затем выполните анализ в Probe, получив графики I(i1), I(i2) и I(r). Хотя они и представляют собой токи, но численно они равны напряжениям, так как проходят через сопротивление в 1 Ом. На рис. 7.5 представлены результаты. Теперь можно установить, что первый график представляет собой основную гармонику, второй — вторую гармонику, а третий — результат сложения их в резисторе r . Конечно, можно получить график V(3) вместо I(r). При этом ось Y будет размечена в единицах напряжения, а не тока. Убедитесь, что сумма двух первых кривых дает третью кривую в различные моменты времени. Чтобы сделать график более компактным, мы использовали смещение в 1 В для основной гармоники и в 0,5 В — для второй гармоники. Фактически основная гармоника имеет нулевое смещение.

Рис. 7.5. Основная и вторая гармоники и результат их сложения
Искажение по второй гармонике в усилителях
Когда рабочая область усилителя выходит за пределы линейной части характеристики, это приводит к некоторым искажениям. Первое приближение к реальной выходной кривой достигается включением в модель второй гармоники, показывающей, что переходная функция, связывающая i c и i b (ток коллектора и базы), является некоторой параболой. Обычно искажение намного меньше, чем принятое в нашем первом, вводном, примере, который был показан на рис. 7.1. Более точный полином задается формулой
f ( x ) = 0,1 + x + 0,2 x ².
Достаточно просто преобразовать первоначальный входной файл, чтобы он отражал эту ситуацию. Команда ввода для зависимого источника Е примет вид:
Е 2 0 poly(1) 1,0 0.1 1 0.2; последние три величины для k0, k1, k2
а весь входной файл будет:
Fourier Analysis; Second-Harmonic Distortion, Power Amplifier
Vin 1 0 sin(0 1 1000)
Rin 1 0 1MEG
E 2 0 poly(1) 1,0 0.1 1 0.2
Rout 2 0 1MEG
.TRAN 1us 1ms
.FOUR 1000 V(1) V(2)
.PROBE
.END
Проведите анализ и получите в Probe графики V(1) и V(2). Вы увидите, что обе волны выглядят, как настоящие синусоиды. Для более точного сравнения удалите график V(2) и получите вместо него график V(2)–0,1. Это позволит сблизить обе кривые. При сравнении волн не забудьте, что V(1) представляет собой просто синусоидальный сигнал, a V(2) — комбинацию основной и второй гармоник. В этом примере вторая гармоника значительно меньше по амплитуде, чем в предыдущем. Вы можете распечатать результаты исследования, приведенные на рис. 7.6.
Читать дальшеИнтервал:
Закладка: