Дж. Кеоун - OrCAD PSpice. Анализ электрических цепей

Тут можно читать онлайн Дж. Кеоун - OrCAD PSpice. Анализ электрических цепей - бесплатно ознакомительный отрывок. Жанр: Программы, издательство ДМК Пресс, Питер, год 2008. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    OrCAD PSpice. Анализ электрических цепей
  • Автор:
  • Жанр:
  • Издательство:
    ДМК Пресс, Питер
  • Год:
    2008
  • Город:
    Москва, Санкт-Петербург
  • ISBN:
    978-5-9706-0009-2
  • Рейтинг:
    4.63/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Дж. Кеоун - OrCAD PSpice. Анализ электрических цепей краткое содержание

OrCAD PSpice. Анализ электрических цепей - описание и краткое содержание, автор Дж. Кеоун, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Это руководство по работе в программе OrCAD Pspice предназначено для всех, кто знаком с основными разделами электротехники. При постепенном усложнении задач объясняются все необходимые аспекты работы в OrCAD Pspice, что позволяет творчески применять их при дальнейшем анализе электрических и электронных схем и устройств. Рассмотрение материала начинается с анализа цепей постоянного тока, продолжается анализом цепей переменного тока, затем переходит к различным разделам полупроводниковой электроники. Информация изложена таким образом, чтобы каждый, кто изучал или изучает определенный раздел электротехники, мог сразу же использовать OrCAD Pspice на практике. Больше внимания, чем в других книгах по этой теме, уделяется созданию собственных моделей и использованию встроенных моделей схем в OrCAD Pspice.

На прилагаемом к книге DVD вы найдете демонстрационную версию программы OrCAD PSpice Student Edition 9, которой можно пользоваться свободно. Кроме того, на диске размещена версия OrCAD 10.5 Demo Release, с которой можно работать в течение 30 дней после установки на компьютер.

OrCAD PSpice. Анализ электрических цепей - читать онлайн бесплатно ознакомительный отрывок

OrCAD PSpice. Анализ электрических цепей - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Дж. Кеоун
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Рис 76 Основная и вторая гармоники и результат их сложения Выйдя из - фото 318

Рис. 7.6. Основная и вторая гармоники и результат их сложения

Выйдя из программы Probe, рассмотрите выходной файл для этого случая. Входное напряжение V(1) точно такое же, как и в предыдущем примере, но V(2), конечно, отличается. Обратите внимание, что постоянная составляющая выходного напряжения равна 0.2 В, а вторая гармоника при f =2 кГц имеет амплитуду 0,1 В и фазовый угол -90°. Другие гармоники намного меньше и ими можно пренебречь. В заключение определите общее гармоническое искажение, которое очень близко к 10%, как и ожидалось. Искажение по второй гармонике определено как b 1/ b 2где bb 2— коэффициенты при второй и основной гармониках соответственно. Эти данные приведены на рис. 7.7.

Fourier Analysis; Second-Harmonic Distortion, Power Amplifier

Vin 1 0 sin(0 1 1000)

Rin 1 0 1MEG

E 2 0 poly(1) 1.0 0.1 1 0.2

Rout 2 0 1MEG

.TRAN 1us 1ms

.FOUR 1000 V(1) V(2)

.PROBE

.END

NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE

( 1) 0.0000 ( 2) .1000

FOURIER COMPONENTS OF TRANSIENT RESPONSE V(1)

DC COMPONENT = 2.936647E-08

HARMONIC FREQUENCY FOURIER NORMALIZED PHASE NORMALIZED

NO (HZ) COMPONENT COMPONENT (DEG) PHASE (DEG)

1 1.000E+03 1.000E+00 1.000E+00 1.115E-06 0.000E+00

2 2.000E+03 1.994E-08 1.994Е-08 -9.308E+01 -9.308E+01

3 3.000E+03 7.381E-09 7.381E-09 -9.083E+01 -9.083E+01

4 4.000E+03 4.388E-09 4.388E-09 -8.993E+01 -8.993E+01

5 5.000E+03 3.134E-09 3.134Е-09 -9.107Е+01 -9.107Е+01

6 6.000E+03 1.525E-09 1.525E-09 -6.706E+01 -6.706Е+01

7 7.000E+03 1.511E-09 1.511E-09 -1.392E+02 -1.392E+02

8 8.000E+03 1.237E-09 1.237E-09 -3.990E+01 -3.990E+01

9 9.000E+03 7.642E-10 7.642E-10 3.320E+01 3.320E+01

TOTAL HARMONIC DISTORTION = 2.208405E-06 PERCENT

FOURIER COMPONENTS OF TRANSIENT RESPONSE V(2)

DC COMPONENT = 2.000000E-01

HARMONIC FREQUENCY FOURIER NORMALIZED PHASE NORMALIZED

NO (HZ) COMPONENT COMPONENT (DEG) PHASE (DEG)

1 3.000E+03 1.000E+00 1.000E+00 7.683E-07 0.000E+00

2 2.000E+03 1.000E-01 1.000E-01 -9.000E+01 -9.000E+01

3 3.000E+03 1.756E-08 1.756E-08 -1.336E+02 -1.336E+02

4 4.000E+03 1.430E-08 1.430E-08 -1.348E+02 -1.348E+02

5 5.000E+03 9.547E-09 9.547E-09 -1.365E+02 -1.365E+02

6 6.000E+03 8.100E-09 8.100E-09 -1.232E+02 -1.232E+02

7 7.000E+03 6.463E-09 6.463E-09 -1.342E+02 -1.342E+02

8 8.000E+03 5.743E-09 5.743E-09 -9.544E+01 -9.544E+01

9 9.000E+03 6.931E-09 6.931E-09 -1.092E+02 -1.092E+02

TOTAL HARMONIC DISTORTION = 9.999880E+00 PERCENT

Рис. 7.7. Результаты анализа искажений по второй гармонике в усилителях

Интермодуляционные искажения

Используем простую схему (рис. 7.8), чтобы показать, как две синусоидальные волны объединяются в нелинейном устройстве, использующем довольно близкие друг к другу частоты, а именно f 1=1 кГц и f 2=1,5 кГц. Нелинейное смешивание происходит в зависимом источнике е-типа VCVS (ИНУН). Полином, описывающий связь, содержит больше членов, чем в предыдущем примере:

f ( x ) = 1 + x + х ² + x ³.

Рис 78 Схема для демонстрации интермодуляционных искажений Токи - фото 319

Рис. 7.8. Схема для демонстрации интермодуляционных искажений

Токи, суммируясь, создают в R= 1 Ом напряжение V(1), численно равное току в R. Таким образом, входное напряжение V(1) можно воспринимать как напряжение в нелинейном смесителе. Поскольку синусоидальные волны имеют различные частоты, их сумма представляет собой сложное периодическое колебание с частотой, отличной от частоты исходных составляющих (частотой биений). Входной файл:

Intermodulation Distortion

i1 0 1 sin(0 1 1000)

i2 0 1 sin(0 1 1500)

r 1 0 1

е20 poly(1) 1,0 1 1 1 1

rout 2 0 1MEG

.tran 50us 50ms 50us

.probe

.end

Проведите моделирование и получите в Probe V(1). Выберите Plot, X-Axis Settings…, User Defined, и установите диапазон от 0 до 10 мс, чтобы достичь установившегося входного напряжения. Этот график показан на рис. 7.9. Чтобы подтвердить, что он является фактически суммой гармонических составляющих с частотами 1 и 1,5 кГц, выберем Trace, Fourier, переходя из временной в частотную область. Изменим теперь границы по оси X , установив частотный диапазон от 4 до 12 кГц. Убедитесь, что параметры осей соответствуют нужным частотам и ожидаемым амплитудам. Фактически при f =1 кГц напряжение равно 0,991 В, а при f =1,5 кГц оно составляет 0,979 В. Не забывайте, что при этом синтезе присутствует некоторая ошибка накопления. На рис. 7.10 показана соответствующая амплитудно-частотная характеристика.

Рис 79 Выходное напряжение при интермодуляционных искажениях Рис 710 - фото 320

Рис. 7.9. Выходное напряжение при интермодуляционных искажениях

Рис 710 Спектральный состав входного напряжения Выберите затем Trace End - фото 321

Рис. 7.10. Спектральный состав входного напряжения

Выберите затем Trace, End Fourier, чтобы возвратиться во временную область, удалите график V(1) и получите график напряжения на выходе смесителя V(2). Напомним, что смеситель представляет собой ИНУН с полиномиальной связью, заданной функцией f ( х ). Временная зависимость представляет собой график, подобный графику V(1), но при более внимательном рассмотрении можно обнаружить, что формы напряжений значительно отличаются. Кое-какие подсказки можно получить из гармонического состава этого сложного колебания, так что необходимо будет опять перейти в частотную область, выбрав диапазон по оси X от 0 до 5 кГц. Мы рекомендуем распечатать частотный спектр для дальнейшего изучения. Теоретический анализ компонентов частотной модуляции позволяет предсказывать и проверять результаты анализа на PSpice. Обратите внимание, что имеется постоянная составляющая в 2 В наряду со значительными составляющими в интервале от 0,5 до 4,5 кГц (смотри рис. 7.11 для частотного спектра).

Рис 711 Спектральный состав выходного напряжения Сложение гармоник - фото 322

Рис. 7.11. Спектральный состав выходного напряжения

Сложение гармоник

Простейшим для теоретического анализа является случай гармонического воздействия на цепь, состоящую из линейных компонентов, таких как резисторы, конденсаторы и катушки индуктивности, и, как вы знаете, при этом реакция представляет собой гармоническое колебание с той же частотой входного сигнала. Различные падения напряжения в схеме также представляют собой гармонические колебания с той же частотой, отличающиеся только по амплитуде и фазе. Используем простую схему, чтобы проиллюстрировать некоторые из этих свойств. На рис. 7.12 показаны три источника напряжения, питающие схему, содержащую резисторы R= 1 Ом и R 1 =R 2=0,001 Ом. Последние два резистора требуются, чтобы сделать источники напряжения неидеальными. Используя эту схему, мы можем показать сложение синусоидальных волн в Probe. Входной файл:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Дж. Кеоун читать все книги автора по порядку

Дж. Кеоун - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




OrCAD PSpice. Анализ электрических цепей отзывы


Отзывы читателей о книге OrCAD PSpice. Анализ электрических цепей, автор: Дж. Кеоун. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x