Компьютерра - Журнал Компьютерра №719

Тут можно читать онлайн Компьютерра - Журнал Компьютерра №719 - бесплатно полную версию книги (целиком) без сокращений. Жанр: Прочая околокомпьтерная литература. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Компьютерра - Журнал Компьютерра №719 краткое содержание

Журнал Компьютерра №719 - описание и краткое содержание, автор Компьютерра, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Журнал Компьютерра №719 - читать онлайн бесплатно полную версию (весь текст целиком)

Журнал Компьютерра №719 - читать книгу онлайн бесплатно, автор Компьютерра
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Мы когда-то писали о задачах-вызовах, за решение которых обещаны призы в миллион долларов. Как вы считаете, такие вызовы стимулируют развитие науки или только спортивную ее сторону?

- Есть два типа жизни в математике. Два способа мышления. Вызовы, знаменитые проблемы, которые многие хотят решить, привлекают людей определенного склада ума, их можно назвать великими спортсменами. Они хотят выиграть. Хотят получить золото. Но есть и те, кто стремится открывать неизвестные острова, материки. Такие люди делают работы, нацеленные не на решение проблем, а на открытие новых направлений. И то и другое замечательно, и то и другое стимулирует развитие науки.

Можно ли привести недавние достижения, относящиеся ко второму типу?

- Я бы назвал пионерские работы по теории узлов (см. врезку. - Л.Л.-М.). Возник новый язык, открыты многочисленные и очень интересные инварианты узлов - полином Джонса, инвариант Васильева. Проблема классификации узлов пока не решена. Но открыт новый мир, мир инвариантов, которые управляют узлами, и сейчас этим миром занимаются ради него самого. Жизнь в этом мире необычайно увлекательна, изучать инварианты так интересно, что люди занимаются ими, даже не будучи уверены в том, что проблема классификации будет решена. К тому же эта область имеет массу приложений, в первую очередь в физике. Надо сказать, что все по-настоящему глубокие вещи в математике так или иначе связаны с какими-то соображениями из математической физики.

Значит, наибольший толчок развитию математики дает именно физика? Или компьютерный мир тоже?

- Полагаю, что и физика, и компьютерный мир. Физика мне ближе, я все-таки занимаюсь сейчас гамильтоновыми системами и вижу массу новых идей, возникающих из приложений в физике и механике. Второе, что я вижу, - в компьютерном мире (понимаемом широко) возникает очень много идей, которые важны для фундаментальной математики. Я бы назвал еще и биологию как важный источник задач для современной математики. Но это лишь то, что связано с моими собственными научными интересами.

Над чем вы сейчас работаете?

- Над проблемой интегрирования гамильтоновых систем дифференциальных уравнений (эти системы возникают в огромном количестве задач классической механики и других областей физики. - Л.Л.-М.). Недавно мы с моими сотрудниками открыли новые инварианты таких систем, позволяющие их классифицировать. Есть известная прикладная задача: даны две системы дифференциальных уравнений, описывающие какие-нибудь процессы, вопрос - эквивалентны ли эти системы? Может быть, на самом деле процесс один и тот же, просто уравнения записаны в разных системах координат? Желательно иметь такие инварианты, которые можно вычислить для каждой из систем и посмотреть: если инварианты совпали, то системы эквивалентны, не совпали - не эквивалентны. Вот такие инварианты мы нашли несколько лет тому назад - это графы с некоторыми метками. Они применимы к разным классам систем, в первую очередь к динамике твердого тела - к движению твердого тела в жидкости, в том числе намагниченной, к движению тела с полостями, тела с неголономными связями. В частности, мы с А. Болсиновым доказали теорему об эквивалентности двух известных систем уравнений: движения твердого тела (случай Эйлера с закрепленной точкой) и динамики геодезических на эллипсоиде. Причем там очень тонкий эффект - эквивалентность есть, но ее нельзя сделать гладкой.

Теория узлов В отличие от функций Морса и гомологий теория узлов имеет дело не - фото 13Теория узлов

В отличие от функций Морса и гомологий, теория узлов имеет дело не с многомерными абстракциями, а с узлами в самом прямом житейском смысле слова - заплетенными веревками со связанными концами. До сих пор никому не удалось найти алгоритм, определяющий, одинаковы ли два заданных узла - то есть можно ли один из них превратить в другой, не разрывая и не развязывая веревку. Если бы мы жили в плоскости, никаких узлов у нас бы не было - их в плоскость не засунешь. В четырехмерном пространстве любой узел можно превратить в обычное колечко, а его потом - в любой другой узел, так что вопрос снимается. Но вот в нашем 3D узлы оказались настолько запутанными, что вокруг них образовалась целая наука - как теперь выясняется, имеющая прямой выход в квантовую теорию поля. На рисунке - сложный на вид узел, но - кто бы мог подумать! - это лишь иллюзия, перед нами обычное, незаузленное кольцо.

Это затягивает

Что сейчас мотивирует студентов мехмата? Они нацелены именно на науку или просто хотят получить хорошее образование, престижный диплом, чтобы затем заняться чем-нибудь другим?

- Как всегда - далеко не все видят себя будущими учеными.

Как всегда? То есть радикальных изменений вы не замечаете?

- Нет, не замечаю. И раньше основная масса студентов хотела получить хорошее образование, которое обеспечит им достойное место в обществе. Наши студенты пять лет учатся совершенно уникальному способу мышления. Тут и логика, и гибкость формирования понятий, и умение формализовать прикладную задачу для математики. Это получают все, даже не круглые отличники. В этом, собственно, основная польза от изучения фундаментальных наук - математики, по крайней мере. Но тех, кто потом пойдет работать в фундаментальную науку, немного. Таких действительно стало меньше, чем раньше, поскольку в последние годы был внедрен новый тип психологии - стремление зарабатывать деньги. Это хорошо. Но есть люди, которые понимают, что не в деньгах счастье. И которые странным образом - разумеется, от денег не отказываясь, - видят свое будущее в более… ну, что ли, идеализированном виде. Такие ребята всегда были и будут, на них, собственно, и держится фундаментальная наука. Они хотят получить в жизни минимальный фундамент под ногами, но в целом ориентированы на эдакую идеальную действительность.

Нет ли у вас ощущения, что теперь у студентов не то чтобы культурный уровень снизился, а просто это другой культурный слой, не тот, что раньше?

- Это есть. И опять же объясняется сменой идеологии. Ребята, начиная с 4–5-го курса, вынуждены зарабатывать деньги. Причем не всегда потому, что не хватает на жизнь. Их подталкивает атмосфера в обществе в целом: идея, что необходимо иметь большие деньги. Это мешает многим, рождает прагматизм, в целом студенты стали более прагматичны. Раньше, когда зарплаты были более-менее унифицированы, для каждого слоя был свой уровень доходов: кандидат, доктор, профессор, инженер. В те годы люди тратили меньше свободного времени на зарабатывание дополнительных денег. Сейчас вы можете, потратив свое время, заработать денег все больше, больше, больше и больше. Далеко не все могут на этом пути остановиться, в том числе и студенты. Это затягивает. Это увлекает. Ты можешь обедать в студенческой столовой, или в профессорской столовой на втором этаже, или в кафе, в ресторане, в шикарном отеле - верхней границы нет.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Компьютерра читать все книги автора по порядку

Компьютерра - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Журнал Компьютерра №719 отзывы


Отзывы читателей о книге Журнал Компьютерра №719, автор: Компьютерра. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x