Стюарт Рассел - Совместимость. Как контролировать искусственный интеллект
- Название:Совместимость. Как контролировать искусственный интеллект
- Автор:
- Жанр:
- Издательство:Альпина нон-фикшн
- Год:2021
- Город:Москва
- ISBN:978-5-0013-9370-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Стюарт Рассел - Совместимость. Как контролировать искусственный интеллект краткое содержание
В своей новаторской книге автор рассказывает, каким образом люди уже научились использовать ИИ, в диапазоне от смертельного автономного оружия до манипуляций нашими предпочтениями, и чему еще смогут его научить. Если это случится и появится сверхчеловеческий ИИ, мы столкнемся с сущностью, намного более могущественной, чем мы сами. Как гарантировать, что человек не окажется в подчинении у сверхинтеллекта?
Для этого, полагает Рассел, искусственный интеллект должен строиться на новых принципах. Машины должны быть скромными и альтруистичными и решать наши задачи, а не свои собственные.
О том, что это за принципы и как их реализовать, читатель узнает из этой книги, которую самые авторитетные издания в мире назвали главной книгой об искусственном интеллекте.
Все, что может предложить цивилизация, является продуктом нашего интеллекта; обретение доступа к существенно превосходящим интеллектуальным возможностям стало бы величайшим событием в истории. Цель этой книги — объяснить, почему оно может стать последним событием цивилизации и как нам исключить такой исход.
Введение понятия полезности — невидимого свойства — для объяснения человеческого поведения посредством математической теории было потрясающим для своего времени. Тем более что, в отличие от денежных сумм, ценность разных ставок и призов с точки зрения полезности недоступна для прямого наблюдения.
Первыми, кто действительно выиграет от появления роботов в доме, станут престарелые и немощные, которым полезный робот может обеспечить определенную степень независимости, недостижимую иными средствами. Даже если робот выполняет ограниченный круг заданий и имеет лишь зачаточное понимание происходящего, он может быть очень полезным.
Очевидно, действия лояльных машин должны будут ограничиваться правилами и запретами, как действия людей ограничиваются законами и социальными нормами. Некоторые специалисты предлагают в качестве решения безусловную ответственность.
Совместимость. Как контролировать искусственный интеллект - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Рефлекторные действия участвуют и в таких более рутинных задачах, как соблюдение рядности: если автомобиль хотя бы минимально отклонится от идеального положения в ряду, простая система контроля с обратной связью может повернуть рулевое колесо в противоположном направлении и исправить отклонение. Величина поворота будет зависеть от того, насколько быстро машина смещается в сторону. Контрольные системы этого типа обычно разрабатываются так, чтобы минимизировать квадрат бокового отклонения, нарастающего со временем. Разработчик создает закон управления с обратной связью, по которому при определенных условиях в отношении скорости и кривизны дороги приближенно реализуется эта минимизация [79] Об алгоритмах рулевого управления см., например: Jarrod Snider, «Automatic steering methods for autonomous automobile path tracking», technical report CMU-RI-TR-09–08, Robotics Institute, Carnegie Mellon University, 2009.
. Аналогичная система действует всякий раз, когда вы идете и затем останавливаетесь; если бы она прекратила работать, вы тут же упали бы. Как и в случае мигательного рефлекса, довольно трудно отключить этот механизм и позволить себе упасть.
Итак, рефлекторные агенты выполняют задачу разработчика, но не знают, в чем она заключается и почему они действуют определенным образом. Из этого следует, что они не могут в действительности принимать решения сами; кто-то другой, обычно разработчик или процесс биологической эволюции, должен все решить заранее. Очень трудно создать хорошего рефлекторного агента путем обычного программирования, за исключением очень простых задач наподобие игры в крестики-нолики или экстренного торможения. Даже в этих случаях рефлекторный агент крайне негибок и не может изменить свое поведение, если обстоятельства указывают, что реализуемая политика уже не годится.
Одним из способов создания более мощных рефлекторных агентов является процесс обучения на примерах Г. Вместо того чтобы устанавливать правила поведения или задавать функцию вознаграждения либо цель, человек может дать примеры решения проблем и верное решение для каждого случая. Например, мы можем создать агента-переводчика с французского языка на английский, предоставив примеры предложений на французском языке с правильным переводом на английский. (К счастью, парламенты Канады и ЕС ежегодно создают миллионы таких примеров.) Затем алгоритм контролируемого обучения обрабатывает примеры и создает комплексное правило, которое берет любое предложение на французском языке в качестве входа и делает перевод на английский язык. Нынешний чемпион среди обучающихся алгоритмов машинного перевода является разновидностью так называемого глубокого обучения и создает правило в виде искусственной нейронной сети с сотнями слоев и миллионами параметров Г. Другие алгоритмы глубокого обучения оказались очень хороши для классифицирования объектов в изображениях и распознавания слов в речевом сигнале. Машинный перевод, распознавание речи и визуальных объектов — три самые важные подобласти в сфере ИИ, поэтому перспективы глубокого обучения вызывают такой энтузиазм.
Можно почти бесконечно спорить о том, приведет ли глубокое обучение напрямую к ИИ человеческого уровня. По моему мнению, которое я прокомментирую в дальнейшем, оно далеко отстает от необходимого Г, но пока давайте сосредоточимся на том, как эти методы вписываются в стандартную модель ИИ, в которой алгоритм оптимизирует фиксированную задачу. Для глубокого обучения, как и для любого контролируемого обучающегося алгоритма, «вводимая в машину задача» обычно состоит в максимизации предсказательной точности, или, что то же самое, минимизации ошибок. Это во многом кажется очевидным, но в действительности имеет два варианта понимания, в зависимости от того, какую роль выученное правило должно играть во всей системе. Первая роль — это восприятие: сеть обрабатывает сенсорный входной сигнал и выдает информацию остальной системе в форме вероятностных оценок воспринимаемого. Если это алгоритм распознавания объектов, он может сказать: «70 % вероятность, что это норфолкский терьер, 30 % вероятность, что это норвичский терьер» [80] Норфолкский и норвичский терьеры — две категории из базы данных ImageNet. Они печально знамениты тем, что их трудно различить и до 1964 г. считались одной породой.
. Остальная система решает, какое внешнее действие предпринять на основе этой информации. Такая задача, связанная с восприятием, беспроблемна в следующем смысле: даже «безопасная» сверхинтеллектуальная ИИ-система, в противоположность «небезопасной», основанной на стандартной модели, должна иметь как можно более точную и отлаженную систему восприятия.
Проблема возникает, когда мы переходим от восприятия к принятию решений. Например, обученная сеть распознавания объектов может автоматически присваивать подписи изображениям на сайте или в учетной записи в социальной сети. Присваивание подписей — это действие, имеющее последствия. Каждое такое действие требует принятия реального решения в плане классификации, и, если нет гарантий, что каждое решение совершенно, человек-разработчик должен задать функцию потерь , определяющую издержки неверного классифицирования объекта типа А как объект типа Б. Именно так у Google возникла приснопамятная проблема с гориллами. В 2015 г. разработчик ПО Джеки Алсине пожаловался в «Твиттер», что сервис аннотирования фотографий Google Photos обозначил его и его друга как горилл [81] Глубоко прискорбный инцидент с аннотированием изображений: Daniel Howley, «Google Photos mislabels 2 black Americans as gorillas», Yahoo Tech , June 29, 2015.
. Хотя непонятно, как именно произошла эта ошибка, почти наверняка алгоритм машинного обучения Google был разработан под минимизацию фиксированной, строго определенной функции потерь — более того, он приписывал всем ошибкам одну и ту же стоимость. Иными словами, он предполагал, что стоимость ошибочного принятия человека за гориллу равна стоимости ошибочного принятия норфолкского терьера за норвичского. Очевидно, это неадекватная функция потери для Google (или владельцев компании), что продемонстрировала возникшая проблема в сфере отношений с общественностью.
Поскольку возможных подписей к изображениям тысячи, количество потенциальных издержек, связанных с ошибочным принятием одной категории за другую, исчисляется миллионами. Несмотря на все усилия, Google обнаружила, что очень трудно заранее задать все эти параметры. Вместо этого следовало признать неопределенность в отношении истинной стоимости ошибочной классификации и создать обучающийся и классифицирующий алгоритм с достаточной чувствительностью к издержкам и связанной с ними неопределенности. Такой алгоритм мог бы иногда спрашивать у разработчиков Google что-нибудь вроде: «Что хуже: ошибочно принять собаку за кошку или человека за животное?» Кроме того, при наличии существенной неопределенности в отношении стоимости ошибочной классификации алгоритм мог бы отказываться подписывать некоторые изображения.
Читать дальшеИнтервал:
Закладка: