Стюарт Рассел - Совместимость. Как контролировать искусственный интеллект

Тут можно читать онлайн Стюарт Рассел - Совместимость. Как контролировать искусственный интеллект - бесплатно ознакомительный отрывок. Жанр: Прочая околокомпьтерная литература, издательство Альпина нон-фикшн, год 2021. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Стюарт Рассел - Совместимость. Как контролировать искусственный интеллект краткое содержание

Совместимость. Как контролировать искусственный интеллект - описание и краткое содержание, автор Стюарт Рассел, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
В массовом сознании сверхчеловеческий искусственный интеллект — технологическое цунами, угрожающее не только экономике и человеческим отношениям, но и самой цивилизации. Конфликт между людьми и машинами видится неотвратимым, а его исход предопределенным. Выдающийся исследователь ИИ Стюарт Рассел утверждает, что этого сценария можно избежать.
В своей новаторской книге автор рассказывает, каким образом люди уже научились использовать ИИ, в диапазоне от смертельного автономного оружия до манипуляций нашими предпочтениями, и чему еще смогут его научить. Если это случится и появится сверхчеловеческий ИИ, мы столкнемся с сущностью, намного более могущественной, чем мы сами. Как гарантировать, что человек не окажется в подчинении у сверхинтеллекта?
Для этого, полагает Рассел, искусственный интеллект должен строиться на новых принципах. Машины должны быть скромными и альтруистичными и решать наши задачи, а не свои собственные.
О том, что это за принципы и как их реализовать, читатель узнает из этой книги, которую самые авторитетные издания в мире назвали главной книгой об искусственном интеллекте.
Все, что может предложить цивилизация, является продуктом нашего интеллекта; обретение доступа к существенно превосходящим интеллектуальным возможностям стало бы величайшим событием в истории. Цель этой книги — объяснить, почему оно может стать последним событием цивилизации и как нам исключить такой исход.
Введение понятия полезности — невидимого свойства — для объяснения человеческого поведения посредством математической теории было потрясающим для своего времени. Тем более что, в отличие от денежных сумм, ценность разных ставок и призов с точки зрения полезности недоступна для прямого наблюдения.
Первыми, кто действительно выиграет от появления роботов в доме, станут престарелые и немощные, которым полезный робот может обеспечить определенную степень независимости, недостижимую иными средствами. Даже если робот выполняет ограниченный круг заданий и имеет лишь зачаточное понимание происходящего, он может быть очень полезным.
Очевидно, действия лояльных машин должны будут ограничиваться правилами и запретами, как действия людей ограничиваются законами и социальными нормами. Некоторые специалисты предлагают в качестве решения безусловную ответственность.

Совместимость. Как контролировать искусственный интеллект - читать онлайн бесплатно ознакомительный отрывок

Совместимость. Как контролировать искусственный интеллект - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Стюарт Рассел
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

К сожалению, «Пятое поколение» и другие похожие проекты выдохлись в конце 1980-х и начале 1990-х гг., отчасти из-за неспособности логики первого порядка работать с неопределенной информацией. Они стали воплощением возникшего вскоре уничижительного понятия «старый добрый ИИ» (Good Old-Fashioned AI, GOFAI) [351]. Стало модно вообще отвергать логику как не имеющую отношения к ИИ. Многие исследователи ИИ, работающие в настоящее время в сфере глубокого обучения, ничего не знают о логике. Думаю, эта мода пройдет: если вы признаете, что мир содержит объекты, связанные друг с другом различными способами, то логика первого порядка не может не быть для вас очевидной, поскольку дает базовую математику для объектов и отношений. Это мнение разделяют Демис Хассабис, генеральный директор Google DeepMind [352]:

Глубокое обучение в его сегодняшнем состоянии можно рассматривать как аналог чувствительной коры нашего головного мозга — зрительной или слуховой коры. Конечно, настоящий интеллект далеко не сводится к этому, его нужно перекомпоновать в рассуждение более высокого уровня и символическое рассуждение, с чем классический ИИ пытался разобраться в 1980-х гг.

…Мы бы хотели, чтобы эти системы доросли до символического уровня рассуждения — математики, речи и логики. Это очень важная часть нашей работы.

Итак, вот важнейшие уроки первых 30 лет исследования ИИ: программе, которая знает что-то, в любом практическом смысле, нужна способность репрезентации и рассуждения, по меньшей мере сопоставимая с той, что предлагается логикой первого порядка. На данный момент мы не знаем, какую именно форму примет эта способность. Возможно, она будет встроена в системы вероятностного рассуждения, в системы глубоко обучения или в гибридную схему, которую еще предстоит изобрести.

Приложение В. Неопределенность и вероятность

Если логика создает общий фундамент для рассуждения на основе точного знания, то теория вероятности охватывает рассуждения на основе неопределенной информации (частным случаем которой является точное знание). Неопределенность — нормальная эпистемологическая ситуация для агента в реальном мире. Хотя основные идеи теории вероятности были разработаны в XVII в., лишь недавно появилась возможность формальным образом создавать и обрабатывать большие вероятностные модели.

Основы теории вероятности

Теория вероятности имеет общую с логикой мысль о существовании возможных миров. Обычно начинают с определения того, что это за миры. Например, если я бросаю обычную шестигранную игральную кость, то имею шесть миров (иногда их называют результатами ): 1, 2, 3, 4, 5, 6. Выпадет из них только один, но я заранее не знаю, какой именно. Теория вероятности предполагает, что можно присвоить вероятность каждому миру; в случае моей игральной кости я приписываю каждому миру вероятность 1/6. (Эти вероятности оказались равны, но так бывает не всегда; единственное требование — чтобы в сумме они составляли 1.) Теперь я могу спросить, например: «Какова вероятность того, что выпадет четное число?» Чтобы это узнать, я просто складываю вероятности трех миров, для которых число является четным: 1/6 + 1/6 + 1/6 = ½.

Очевиден также учет новых данных. Допустим, оракул говорит мне, что выпадет простое число (то есть 2, 3 или 5). Это исключает миры 1, 4 и 6. Я просто беру вероятности, соответствующие оставшимся возможным мирам, и пропорционально увеличиваю их так, чтобы сумма осталась равной 1. Теперь вероятность выпадения 2, 3 и 5 составляет в каждом случае 1/3, а вероятность, что мой бросок принесет четное число, становится всего 1/3, поскольку осталось лишь одно четное число, 2. Процесс обновления вероятностей с появлением новых данных является примером Байесова обновления.

Похоже, в вероятностях нет ничего сложного! Даже компьютер может складывать числа, в чем же проблема? Проблема возникает, если миров больше нескольких штук. Например, если я бросаю кость 100 раз, это дает 6 100результатов. Немыслимо начинать процесс вероятностного рассуждения, присваивая номер каждому из них в отдельности. Подсказкой, как работать с этой сложностью, служит тот факт, что броски кости являются независимыми , если известно, что кость правильная, а именно — результат каждого броска не влияет на вероятность результатов любого другого броска. Таким образом, независимость помогает структурировать вероятности сложной совокупности событий.

Допустим, я играю в настольную игру «Монополия» со своим сыном Джорджем. Моя фишка попадает на «Посещение», а Джорджу принадлежит желтый набор, имущество которого находится в 16, 17 и 19 полях от «Посещения». Следует ли ему купить дома для желтого набора сейчас, чтобы мне пришлось платить ему завышенную арендную плату в случае попадания на эти поля, или лучше подождать следующего круга? Это зависит от вероятности выпадения поля из желтого набора в нынешнем круге.

Вот правила бросания костей в «Монополии»: выбрасываются две кости, и фишка передвигается в соответствии с выпавшей суммой; при выпадении дублей игрок снова бросает кости и делает ход; если вторично выпадают дубли, игрок бросает кости и ходит в третий раз (однако, если и третий бросок оказывается дублем, игрок отправляется в тюрьму). Итак, я могу выбросить, скажем, 4–4, затем 5–4, всего 17, или 2–2, затем 2–2, затем 6–2, всего 16. Как и прежде, я просто складываю вероятности всех миров, в которых попадаю на желтое. К сожалению, таких миров много. В общей сложности, можно выбросить до шести костей, и миры исчисляются тысячами. Более того, броски уже не независимы, поскольку второго броска не будет, если первый не окажется дублем. В то же время если зафиксировать ценность первой пары костей, то ценность второй пары будет независимой. Можно ли учесть подобную зависимость?

Байесовы сети

В начале 1980-х гг. Джуда Перл предложил формальный язык под названием Байесовы сети , который позволяет во многих ситуациях реального мира отображать вероятность очень большого числа результатов в очень сжатой форме [353].

На рис 18 представлена Байесова сеть описывающая бросание костей в - фото 20

На рис. 18 представлена Байесова сеть, описывающая бросание костей в «Монополии». Единственные вероятности, которые нужно подставить, это равные 1/6 вероятности выпадения значений 1, 2, 3, 4, 5, 6 в отдельных бросках кости ( D1, D2 и т. д.), а именно — 36 номеров вместо нескольких тысяч. Для объяснения точных значений сети нужна кое-какая математика [354], но основная мысль состоит в том, что стрелки обозначают отношения зависимости — например, значение Дубли12 зависит от значений D1 и D2 . Аналогично значения D3 и D4 (следующий бросок двух костей) зависят от Дубли12 , потому что если Дубли12 имеет значение ложно , то D3 и D4 равны 0 (то есть отсутствию следующего хода).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Стюарт Рассел читать все книги автора по порядку

Стюарт Рассел - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Совместимость. Как контролировать искусственный интеллект отзывы


Отзывы читателей о книге Совместимость. Как контролировать искусственный интеллект, автор: Стюарт Рассел. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x