Стюарт Рассел - Совместимость. Как контролировать искусственный интеллект

Тут можно читать онлайн Стюарт Рассел - Совместимость. Как контролировать искусственный интеллект - бесплатно ознакомительный отрывок. Жанр: Прочая околокомпьтерная литература, издательство Альпина нон-фикшн, год 2021. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Стюарт Рассел - Совместимость. Как контролировать искусственный интеллект краткое содержание

Совместимость. Как контролировать искусственный интеллект - описание и краткое содержание, автор Стюарт Рассел, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
В массовом сознании сверхчеловеческий искусственный интеллект — технологическое цунами, угрожающее не только экономике и человеческим отношениям, но и самой цивилизации. Конфликт между людьми и машинами видится неотвратимым, а его исход предопределенным. Выдающийся исследователь ИИ Стюарт Рассел утверждает, что этого сценария можно избежать.
В своей новаторской книге автор рассказывает, каким образом люди уже научились использовать ИИ, в диапазоне от смертельного автономного оружия до манипуляций нашими предпочтениями, и чему еще смогут его научить. Если это случится и появится сверхчеловеческий ИИ, мы столкнемся с сущностью, намного более могущественной, чем мы сами. Как гарантировать, что человек не окажется в подчинении у сверхинтеллекта?
Для этого, полагает Рассел, искусственный интеллект должен строиться на новых принципах. Машины должны быть скромными и альтруистичными и решать наши задачи, а не свои собственные.
О том, что это за принципы и как их реализовать, читатель узнает из этой книги, которую самые авторитетные издания в мире назвали главной книгой об искусственном интеллекте.
Все, что может предложить цивилизация, является продуктом нашего интеллекта; обретение доступа к существенно превосходящим интеллектуальным возможностям стало бы величайшим событием в истории. Цель этой книги — объяснить, почему оно может стать последним событием цивилизации и как нам исключить такой исход.
Введение понятия полезности — невидимого свойства — для объяснения человеческого поведения посредством математической теории было потрясающим для своего времени. Тем более что, в отличие от денежных сумм, ценность разных ставок и призов с точки зрения полезности недоступна для прямого наблюдения.
Первыми, кто действительно выиграет от появления роботов в доме, станут престарелые и немощные, которым полезный робот может обеспечить определенную степень независимости, недостижимую иными средствами. Даже если робот выполняет ограниченный круг заданий и имеет лишь зачаточное понимание происходящего, он может быть очень полезным.
Очевидно, действия лояльных машин должны будут ограничиваться правилами и запретами, как действия людей ограничиваются законами и социальными нормами. Некоторые специалисты предлагают в качестве решения безусловную ответственность.

Совместимость. Как контролировать искусственный интеллект - читать онлайн бесплатно ознакомительный отрывок

Совместимость. Как контролировать искусственный интеллект - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Стюарт Рассел
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Как и в случае пропозиционной логики, существуют алгоритмы, способные ответить на любой вопрос по любой Байесовой сети, для которой имеются данные. Например, мы можем спросить, какова вероятность попадания на желтое , которая, оказывается, составляет около 3,88 %. (Это значит, что Джордж может подождать, прежде чем покупать дома для желтого набора.) Мы можем задать чуть более амбициозный вопрос о вероятности события Попадание на желтое при условии, что при втором броске выпадает дубль 3. Алгоритм самостоятельно устанавливает, что в этом случае первый бросок должен принести дубль, и приходит к выводу, что ответ — около 36,1 %. Это пример Байесова обновления: когда добавляется новое свидетельство (что результат второго броска — дубль 3), вероятность Попадания на желтое меняется с 3,88 % до 36,1 %. Аналогично вероятность того, что я буду бросать кости трижды ( Дубли 34истинно), составляет 2,78 %, тогда как вероятность трех моих бросков при условии, что я попаду на желтое, — 20,44 %.

Байесовы сети позволяют строить системы на основе знания, свободные от ошибок, свойственных экспертным системам на основе правил, которые создавались в 1980-х гг. (Если бы сообщество разработчиков ИИ меньше сопротивлялось применению теории вероятности в начале 1980-х гг., то могло бы избежать «зимы ИИ», последовавшей после того, как лопнул пузырь этих экспертных систем.) Уже выпущены тысячи приложений в широком спектре областей, от медицинской диагностики до предотвращения терроризма [355].

Байесовы сети создают механизм отображения необходимых вероятностей и выполнения вычислений для осуществления Байесова обновления в случае множества комплексных задач. Как и пропозиционная логика, однако, они имеют довольно ограниченную способность отображать общее знание. Во многих приложениях репрезентация Байесовой сети становится очень большой и повторяющейся. Например, как правила го в пропозиционной логике приходится повторять для каждого пункта, так и основанные на вероятности правила «Монополии» должны быть повторены для каждого игрока, каждого местоположения, где игрок может оказаться, и каждого хода игры. Такие огромные сети практически невозможно создать самостоятельно, приходится пользоваться кодом, написанном на традиционном языке, например С++, чтобы генерировать и объединять многочисленные фрагменты Байесовых сетей. Это рационально в инженерном решении конкретной задачи, но становится препятствием для универсальности, поскольку код С++ должен писаться заново для каждого приложения специалистом.

Языки вероятностной логики первого порядка

К счастью, оказывается, что можно сочетать выразительность логики первого порядка со способностью Байесовых сетей сжато передавать вероятностную информацию. Это сочетание дает нам лучшее от обоих миров: вероятностные системы на основе знания способны обслуживать намного более широкий круг ситуаций реального мира, чем каждый из этих двух методов в отдельности. Например, мы легко можем выразить вероятностное знание о наследовании генетической информации:

для всехособей c, f и m ,

если f — отец c , а m — мать c

икак f , так и m имеют группу крови АВ,

то c имеет группу крови АВ с вероятностью 0,5.

Сочетание логики первого порядка и вероятностной логики дает нам нечто гораздо большее, чем способ выражения неопределенной информации о множестве объектов. Причина в том, что при добавлении неопределенности в миры, содержащие объекты, мы получаем два новых типа неопределенности: не только неопределенность относительно фактов, являющихся истинными или ложными, но также неопределенность в вопросе о том, какие объекты существуют, и о том, где какие объекты находятся. Эти виды неопределенности являются вездесущими. Мир не предстает со списком характеристик, как викторианская пьеса; нет, вы постепенно узнаете о существовании объектов путем наблюдения.

Иногда знание о новых объектах бывает достаточно определенным, например, когда вы открываете окно в номере отеля и впервые видите базилику Сакре-Кёр {21} . Бывает оно и неопределенным, как в случае, когда вы ощущаете легкое потряхивание, которое может быть вызвано и землетрясением, и проходящим поездом подземки. Если идентичность Сакре-Кёр вполне однозначна, то идентичность поезда подземки — нет: возможно, вы ездили на этом самом поезде сотни раз, не осознавая, что это тот же самый поезд. Иногда нам не нужно устранять неопределенность. Обычно я не даю имена всем помидорам в банке с черри и не слежу за самочувствием каждого, если, конечно, мне не нужно описывать ход эксперимента с целью исследования гниения помидоров. Напротив, я стараюсь следить за каждым из аспирантов, которые у меня учатся. (Однажды в моей группе оказались двое стажеров-исследователей, имевших одинаковые имена и фамилии, очень похожие друг на друга внешне и работавшие над тесно связанными темами; я, по крайней мере, считаю, что их было именно двое.) Проблема в том, что мы непосредственно воспринимаем не идентичность объектов, а какие-то аспекты их внешнего облика (его характеристики). Объекты, как правило, не снабжены регистрационными знаками, являющимися их уникальными идентификаторами. Идентичность — это нечто такое, что наш ум иногда приписывает объектам в каких-то своих целях.

Сочетание теории вероятности и выразительного формального языка — достаточно новая область ИИ, часто именуемая вероятностным программированием [356]. Создано несколько десятков языков вероятностного программирования, или PPL, многие из которых получили свои выразительные возможности от обычных языков программирования, а не от логики первого порядка. Все PPL-системы имеют способность представлять и логически обрабатывать комплексное неопределенное знание. Приложения включают систему Microsoft TrueSkill, ежедневно оценивающую миллионы геймеров; модели элементов человеческой когнитивной системы, прежде не поддававшихся объяснению механистическими гипотезами, таких как способность обучиться новым визуальным категориям объектов по единственному образцу [357]; и всемирный мониторинг сейсмической активности в рамках Договора о всеобъемлющем запрещении ядерных испытаний (ДВЗЯИ) для выявления тайных ядерных взрывов [358].

Системы мониторинга ДВЗЯИ собирают данные о движении земной коры в реальном времени с помощью глобальной сети, включающей более 150 сейсмографов, они призваны идентифицировать все происходящие на Земле сейсмические события выше определенной магнитуды и помечать подозрительные. Очевидно, в этой задаче присутствует множество экзистенциальных неопределенностей, поскольку мы заранее не знаем, какие события произойдут; более того, подавляющее большинство сигналов в этих данных — просто шум. Имеется и неопределенность идентичности: всплеск сейсмической энергии, зарегистрированный станцией А в Антарктиде, может исходить или не исходить от того же события, что и другой всплеск, который зафиксировала станция Б в Бразилии. Слушать Землю все равно что слушать тысячи одновременных зашифрованных разговоров, которые еще и заглушаются взаимным наложением.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Стюарт Рассел читать все книги автора по порядку

Стюарт Рассел - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Совместимость. Как контролировать искусственный интеллект отзывы


Отзывы читателей о книге Совместимость. Как контролировать искусственный интеллект, автор: Стюарт Рассел. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x