Стюарт Рассел - Совместимость. Как контролировать искусственный интеллект

Тут можно читать онлайн Стюарт Рассел - Совместимость. Как контролировать искусственный интеллект - бесплатно ознакомительный отрывок. Жанр: Прочая околокомпьтерная литература, издательство Альпина нон-фикшн, год 2021. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Стюарт Рассел - Совместимость. Как контролировать искусственный интеллект краткое содержание

Совместимость. Как контролировать искусственный интеллект - описание и краткое содержание, автор Стюарт Рассел, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
В массовом сознании сверхчеловеческий искусственный интеллект — технологическое цунами, угрожающее не только экономике и человеческим отношениям, но и самой цивилизации. Конфликт между людьми и машинами видится неотвратимым, а его исход предопределенным. Выдающийся исследователь ИИ Стюарт Рассел утверждает, что этого сценария можно избежать.
В своей новаторской книге автор рассказывает, каким образом люди уже научились использовать ИИ, в диапазоне от смертельного автономного оружия до манипуляций нашими предпочтениями, и чему еще смогут его научить. Если это случится и появится сверхчеловеческий ИИ, мы столкнемся с сущностью, намного более могущественной, чем мы сами. Как гарантировать, что человек не окажется в подчинении у сверхинтеллекта?
Для этого, полагает Рассел, искусственный интеллект должен строиться на новых принципах. Машины должны быть скромными и альтруистичными и решать наши задачи, а не свои собственные.
О том, что это за принципы и как их реализовать, читатель узнает из этой книги, которую самые авторитетные издания в мире назвали главной книгой об искусственном интеллекте.
Все, что может предложить цивилизация, является продуктом нашего интеллекта; обретение доступа к существенно превосходящим интеллектуальным возможностям стало бы величайшим событием в истории. Цель этой книги — объяснить, почему оно может стать последним событием цивилизации и как нам исключить такой исход.
Введение понятия полезности — невидимого свойства — для объяснения человеческого поведения посредством математической теории было потрясающим для своего времени. Тем более что, в отличие от денежных сумм, ценность разных ставок и призов с точки зрения полезности недоступна для прямого наблюдения.
Первыми, кто действительно выиграет от появления роботов в доме, станут престарелые и немощные, которым полезный робот может обеспечить определенную степень независимости, недостижимую иными средствами. Даже если робот выполняет ограниченный круг заданий и имеет лишь зачаточное понимание происходящего, он может быть очень полезным.
Очевидно, действия лояльных машин должны будут ограничиваться правилами и запретами, как действия людей ограничиваются законами и социальными нормами. Некоторые специалисты предлагают в качестве решения безусловную ответственность.

Совместимость. Как контролировать искусственный интеллект - читать онлайн бесплатно ознакомительный отрывок

Совместимость. Как контролировать искусственный интеллект - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Стюарт Рассел
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Приложение Г Обучение на опыте Обучение это повышение результативности на - фото 23

Приложение Г. Обучение на опыте

Обучение — это повышение результативности на основе опыта. Для системы зрительного восприятия это может означать обучение распознаванию большего числа категорий объектов с опорой на наблюдаемые примеры этих категорий. Для систем, основанных на опыте, само приобретение дополнительного знания является обучением, потому что означает, что система сумеет ответить на большее количество вопросов. Для прогностической системы принятия решений, такой как AlphaGo, обучение может означать повышение ее способности оценивать игровую позицию или исследовать полезные части дерева возможностей.

Обучение на примерах

Самая распространенная форма машинного обучения называется контролируемым обучением, или обучением с учителем . Алгоритм контролируемого обучения получает набор упражнений, для каждого из которых указан правильный ответ, и должен сформировать гипотезу о том, в чем состоит правило. Обычно система контролируемого обучения стремится оптимизировать соглашение между гипотезой и учебными образцами. Часто также вводится штраф за более сложную, чем это необходимо, гипотезу, в соответствии с принципом Оккама.

Проиллюстрируем это на задаче изучения допустимых ходов в го Если вы знаете - фото 24

Проиллюстрируем это на задаче изучения допустимых ходов в го. (Если вы знаете правила го, вам будет проще следить за ходом рассуждений, если нет — легче проникнуться сочувствием к обучающейся программе.) Допустим, алгоритм начинает с гипотезы:

для всехвременных шагов t и для всехместоположений l

допустимо выставить камень на местоположение l в момент времени t .

В позиции, представленной на рис. 22, ход черных. Алгоритм пробует ход А — все хорошо. Б и В тоже. Затем программа пробует совершить ход Г, поставив камень поверх уже лежащего белого камня: он недопустим. (В шахматах или нардах так можно было бы ходить, именно так «съедаются» фигуры.) Ход Д, поверх черного камня, также недопустим. (Недопустим и в шахматах, но допустим в нардах.) На этих пяти учебных примерах алгоритм может построить следующую гипотезу:

для всехвременных шагов t и для всехместоположений l

если l не занято в момент времени t ,

тодопустимо выставить камень на местоположение l в момент времени t .

Затем программа пробует ход Е и, к своему удивлению, обнаруживает, что он недопустим. После несколько фальстартов она приходит к выводу:

для всехвременных шагов t и для всехместоположений l

если l не занято в момент времени t

и l не окружено камнями противника,

тодопустимо выставить камень на местоположение l в момент времени t .

(Иногда в го это правило называется запретом самоубийства .) Наконец, она проверяет ход Ж, который в этом случае оказывается допустимым. Почесав затылок и, возможно, еще немного поэкспериментировав, программа останавливается на гипотезе, что Ж годится, несмотря на то что камень окружен, потому что захватывает белый камень на Г и сразу же становится не окруженным.

Как видно из постепенного развития правил, обучение происходит через последовательность модификаций гипотезы, так чтобы она соответствовала наблюдаемым примерам. Обучающийся алгоритм делает это с легкостью. Исследователи машинного обучения разработали всевозможные остроумные алгоритмы быстрого поиска хороших гипотез. В данном случае алгоритм ведет поиск в пространстве логических выражений, представляющих правила го, но гипотезы могут являться и алгебраическими выражениями, представляющими физические законы, вероятностными Байесовыми сетями, представляющими заболевания и симптомы, или даже компьютерными программами, определяющими сложное поведение какой-то другой машины.

Второй важный момент состоит в том, что даже хорошая гипотеза может быть неверной . На самом деле, вышеприведенная гипотеза неверна , даже после внесения исправления о том, что ход Ж является допустимым. Она должна включать правило ко , или отсутствия повторов . Например, если белые только что захватили черный камень на Ж, сделав ход на Г, то черные не могут сделать перезахват, пойдя на Ж, поскольку создается та же позиция. Обратите внимание, что это правило резко отличается от того, что программа выучила к настоящему моменту, поскольку означает, что допустимость не может определяться текущей позицией, необходимо помнить и предыдущие.

Шотландский философ Дэвид Юм заметил в 1748 г., что индуктивное рассуждение — а именно от конкретного наблюдения к общим принципам, — не может гарантировать истинности вывода [360]. Современная теория статистического обучения не требует гарантий абсолютной истинности, а лишь гарантию того, что найденная гипотеза, вероятно, является приблизительно правильной [361]. Обучающемуся алгоритму может «не повезти» наткнуться на нерепрезентативную выборку, например он так и не попробует сделать ход на Ж, считая его недопустимым. Возможно также, что он не сумеет предсказать какие-нибудь редкие пограничные случаи, скажем, охватываемые какими-то более сложными и редко всплывающими разновидностями правила отсутствия повторов [362]. Однако, поскольку Вселенная проявляет определенную степень регулярности, крайне маловероятно, чтобы алгоритм выработал чрезвычайно плохую гипотезу, потому что такая гипотеза почти наверняка была бы отброшена одним из экспериментов.

Глубокое обучение — метод, вызывающий в СМИ всю эту шумиху по поводу ИИ, — является, главным образом, формой контролируемого обучения. Это одно из самых существенных достижений в сфере ИИ за последние десятилетия, поэтому полезно разобраться, как он работает. Более того, некоторые исследователи убеждены, что этот метод позволит создать ИИ-системы человеческого уровня в течение нескольких лет, так что стоит оценить, насколько это вероятно.

Проще всего понять глубокое обучение в контексте конкретной задачи, например обучения умению отличать жирафов от лам. Получив некоторое количество подписанных фотографий тех и других животных, обучающийся алгоритм должен сформировать гипотезу, позволяющую ему классифицировать неподписанные изображения. С точки зрения компьютера изображение есть не более чем большая таблица с числами, каждое из которых соответствует одному из трех RGB-значений одного пикселя изображения. Итак, вместо гипотезы го, которая принимает позицию на доске и ход как входной сигнал и решает, является ли ход допустимым, нам нужна гипотеза «жираф−лама», которая брала бы таблицу чисел в качестве входа и предсказывала категорию (жираф или лама).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Стюарт Рассел читать все книги автора по порядку

Стюарт Рассел - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Совместимость. Как контролировать искусственный интеллект отзывы


Отзывы читателей о книге Совместимость. Как контролировать искусственный интеллект, автор: Стюарт Рассел. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x