Компьютерра - Журнал «Компьютерра» № 25-26 от 11 июля 2006 года (645 и 646 номер)

Тут можно читать онлайн Компьютерра - Журнал «Компьютерра» № 25-26 от 11 июля 2006 года (645 и 646 номер) - бесплатно полную версию книги (целиком) без сокращений. Жанр: Прочая околокомпьтерная литература. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Компьютерра - Журнал «Компьютерра» № 25-26 от 11 июля 2006 года (645 и 646 номер) краткое содержание

Журнал «Компьютерра» № 25-26 от 11 июля 2006 года (645 и 646 номер) - описание и краткое содержание, автор Компьютерра, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Журнал «Компьютерра» № 25-26 от 11 июля 2006 года (645 и 646 номер) - читать онлайн бесплатно полную версию (весь текст целиком)

Журнал «Компьютерра» № 25-26 от 11 июля 2006 года (645 и 646 номер) - читать книгу онлайн бесплатно, автор Компьютерра
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Выражение «выборки сравнили по Стьюденту-Фишеру» несет в себе определенную некорректность. Еще чаще встречается некорректное употребление этих методов.

Критерий Стьюдента (t-критерий) представляет собой разницу средних двух выборок, отнесенную к стандартной ошибке разности выборочных средних (которая, в свою очередь, зависит от уровня изменчивости обеих выборок). Для каждого числа степеней свободы (зависящего от численности выборок) вычислено, с какой вероятностью случайность формирования выборок может привести к тому или иному значению t-критерия. Если t-критерий для определенного числа степеней свободы превосходит пороговое значение (например, возникающее в силу случайности с вероятностью 0,05), разницу выборок можно считать достоверной.

Автором этого самого популярного (к сожалению, не благодаря его достоинствам, а в силу его простоты) статистического метода является английский химик Уильям Госсет, работавший на пивоваренную компанию Guinness. По уставу фирмы, ее сотрудники не имели права публиковать результаты исследований, выполненных в рамках служебной деятельности. Поэтому результаты своей работы Госсет опубликовал в 1908 году под псевдонимом Student.

Принципиально важно, что t-критерий определен только для случая, когда сравниваются две выборки с одинаковыми дисперсиями и нормальными распределениями. Если дисперсии в выборках отличаются, этот факт можно показать с помощью F-критерия (требование нормальности распределения остается при этом в силе). F-критерий предложен американским статистиком Джорджем Снедекором и назван им в честь сэра Рональда Фишера, английского генетика, создателя дисперсионного анализа. Этот критерий представляет собой отношение двух дисперсий. Как и для t-критерия, для него известно распределение вероятности случайных отклонений для разных степеней свободы.

Итак, t-критерий позволяет оценить, какова вероятность того, что отличия средних двух выборок отражают лишь случайные процессы при их формировании, а F-критерий позволяет сделать то же самое в отношении меры их изменчивости. Увы, нормальность распределения — важнейшее ограничение применимости этих критериев.

Вопреки господствующему мнению, нормальные распределения — редкость в биологии. Одним из классических примеров «нормального» распределения является распределение людей по их росту. Но взгляните на фотографию: распределения мужчин и женщин по росту разные. На фотографии только здоровые люди, и нет больных с нарушениями гормонального баланса. А подумайте, что будет, если к этому распределению добавить стариков и детей!

Нормальность распределения возникает тогда, когда на величину действует много несвязанных слабых факторов. На биологическое разнообразие обычно влияет целый букет «сильных» факторов, связанных друг с другом букетом же корреляций. Эти факторы — пол, возраст, место в иерархической структуре популяции и многое другое. Увы, со «Стьюдентом-Фишером» в большинстве случаев лучше попрощаться.

Для описания новых видов, к счастью, требуют что-то сверх отличий по метрическим признакам (хотя якобы совсем недавно кому-то удалось описать массу новых видов моллюсков почти исключительно на основании достоверных отличий формы раковины). А для обоснования существования подвидов указанные рассуждения используются вовсю.

Корректны ли они? Конечно, нет. И дело не только в том, что t— и F-критерий применимы только для данных с нормальным распределением. Дело в другом. «Стьюдент-Фишер» дает ответ на вопрос, какова вероятность того, что два сравниваемых распределения одного и того же признака взяты из одной генеральной совокупности, и различия между ними — результат случайности при составлении выборки. Если эта вероятность (p) ниже какого-то уровня (например, 0,05), мы можем рискнуть и принять гипотезу, что выборки взяты из разных совокупностей. Это и называется достоверностью различий. И все. Отсюда есть два следствия.

Первое. Когда мы сравниваем уклеек из двух разных рек, мы и так с самого начала знаем, что это выборки из разных совокупностей. Второе. При уровне значимости 0,05 достоверное отличие — это такое отличие, которое возникает не чаще, чем в одном случае из двадцати. А если мы будем сравнивать выборки по ста признакам (или сто пар выборок по одному признаку), математическое ожидание «достоверных» отличий составит целых пять штук!

Беру две группы по пятьдесят объектов характеризую их по ста признакам - фото 44

Беру две группы по пятьдесят объектов, характеризую их по ста признакам, заполняя столбцы шумом. Сравниваю по «Стьюденту-Фишеру». Получаю шесть «достоверных» отличий, из которых три штуки влезают в первый же скрин (рис. 6). Ну что, теперь можно анализировать, какие именно признаки оказались достоверно отличающимися, и делать на основании этого глубокомысленные выводы о специфике эволюции уклеек в бассейнах двух рек…

Мои рассуждения кажутся вам примитивными? Возьмите любой сборник или журнал с подобными по методологии работами и вы сами сможете найти примеры такого употребления статистических методов.

Что же делать? Для сравнения выборок по признакам, которые не подчиняются нормальному распределению, использовать непараметрические методы. Для сравнения нескольких объектов одновременно использовать дисперсионный анализ. Для сравнения одновременно по нескольким признакам использовать многомерные критерии. Для оценки уровня отличий между разными совокупностями вычислять фенетические дистанции (численные меры того, насколько отличаются друг от друга две выборки). И аккуратнее использовать статистические методы.

Самообман

Мы начали статью с особенностей работы в программе Statistica. Однако ясно, что сама по себе проблема использования численных методов в биологии шире этой программы. В следующем примере речь идет о математическом моделировании эволюции, однако и эту работу можно рассматривать как связанную с биометрией и статистикой. В отличие от предыдущих, этот пример невозможно сделать анонимным — уж слишком широкую огласку он получил. Описывая его, я сошлюсь на «Происхождение видов» Дарвина. Чтобы объяснить, при чем тут Дарвин, нужно немного уйти в сторону.

Должен признаться, что серьезно «подсев» на классическую музыку, категорически не приемлю сборников наподобие «The best of Bach». Авторы таких подборок берут на себя труд подправлять классиков. Великие композиторы иногда могли сочинить что-либо стоящее, но, вероятно, по причине недостатка вкуса, вставляли хитовые мелодии в занудные симфонии. Впрочем, если из устаревшего произведения выкинуть все ненужное, оно может сойти и для современного, придирчивого слушателя. Еще одна примета времени — переложения устаревшей музыки на новый лад. Я своими ушами слышал сетования, что у Баха не было в распоряжении электрогитары — какую хорошую музыку он мог бы написать [Не верю, что за всю историю человечества удалось создать инструмент, более богатый значимыми для человеческой природы интонациями, чем рояль, и более подходящий для выражения эмоций, чем скрипка, альт или виолончель]!

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Компьютерра читать все книги автора по порядку

Компьютерра - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Журнал «Компьютерра» № 25-26 от 11 июля 2006 года (645 и 646 номер) отзывы


Отзывы читателей о книге Журнал «Компьютерра» № 25-26 от 11 июля 2006 года (645 и 646 номер), автор: Компьютерра. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x