Александр Кириченко - Нейросетевое программирование. Инструментарий нейрокомпьютинга
- Название:Нейросетевое программирование. Инструментарий нейрокомпьютинга
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:9785005163271
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Александр Кириченко - Нейросетевое программирование. Инструментарий нейрокомпьютинга краткое содержание
Нейросетевое программирование. Инструментарий нейрокомпьютинга - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Нейросетевое программирование
Инструментарий нейрокомпьютинга
Александр Кириченко
© Александр Кириченко, 2020
ISBN 978-5-0051-6327-1
Создано в интеллектуальной издательской системе Ridero
Нейроконструкции и модели управления
Структурный подход к моделированию мозга реализуется на нескольких уровнях (этапах). В основах теории искусственных нейронных сетей [3] рассматриваются 4 уровня нейросетевого моделирования:
1. Вначале создается информационная модель отдельной нервной клетки – искусственного нейрона (ИН), что составляет первый уровень нейронного моделирования.
2. Ограниченное число ИН далее могут структурироваться в жесткие необучаемые конфигурации – искусственные нейронные ансамбли (ИНА), что составляет второй уровень нейронного моделирования.
3. Третий уровень нейронного моделирования составляют искусственные нейронные сети (ИНС). Это нейросетевые конструкции, которые с помощью специальной процедуры обучения могут гибко изменять свои параметры.
4. На четвёртом уровне создаются комплексы, содержащие большое количество совместно работающих программ и нейронных сетей различного назначения, которые оформляются в виде нейросетевых моделей, систем управления, нейроконструкций, и т. д. вплоть до нейрокомпьютеров.
Данная книга в основном посвящена четвёртому уровню моделирования мозга и представляет интерес магистрам, аспирантам и лицам, углублённо специализирующимся на нейросетевых технологиях.
В начале 2000 годов сформировался переход к новой архитектурной парадигме – ассоциативным искусственным когнитивным системам, способным к самообучению и синтезу нового знания путем ассоциативной рекомбинации полученной информации.
Под «искусственными когнитивными системами» понимаются технические системы, способные к познанию, распознаванию образов и самостоятельному усвоению новых знаний из различных источников, продолжительному обучению, пониманию контекстуального значения и субъективной оценке получаемой информации, синтезу нового знания, мышлению и поведению для успешного решения существующих проблем в условиях реального мира.
Основными зарубежными проектами создания подобных ИКС являются
– европейские проекты BBP/HBP,
– американская инициатива BRAIN,
– проект IBM DeepQA «Watson»,
– проект «Siri» корпорации Apple,
– проект нейросетевого искусственного интеллекта и использующих его роботов компании Google,
– японские проекты JST,
– канадский проект «Spaun» и др.
С 2012 года в России началось активное проведение IТ-исследований в сфере разработки искусственных когнитивных систем, разработана стратегическая программа создания центра прорывных исследований в области информационных технологий «Искусственные когнитивные системы».
Повышение интереса к тематике искусственного интеллекта приводит к появлению большого количества публикаций о структуре и возможностях нейросистем, о типах искусственных нейросетей и открываемых ими возможностях автоматизации мыслительных процессов. Для удовлетворения возникающих потребностей необходимы с одной стороны – новые информационные материалы, и с другой стороны – программные средства, которые позволяют без особых затрат проверять новую информацию на практике, создавать свои нейросетевые системы разных типов, модели нейросетевых устройств и даже узлов нейрокомпьютеров.
Доступные программные средства можно получить из Интернет. Наиболее подготовлен к такой работе freeware нейроконструктор MemBrain [1—4].
Искусственные нейросети являются электронными моделями нейронной структуры мозга.
Продолжительный период эволюции придал мозгу человека много качеств, отсутствующих в современных компьютерах с архитектурой фон Неймана. К ним относятся:
· способность к обучению и обобщению
· ассоциативность и адаптивность
· толерантность к ошибкам
· параллельность работы
Множество проблем, не поддающиеся решению традиционными компьютерами, могут быть эффективно решены с помощью нейросетей.
Достижения в области нейрофизиологии дают начальное понимание механизма естественного мышления, в котором хранение информации происходит в виде сложных образов. Процессы хранения информации в виде образов, использования образов при решении поставленных проблем определяют новую область в обработке данных, которая, не используя традиционного программирования, обеспечивает создание нейронных сетей и их обучение.
В лексиконе разработчиков и пользователей нейросетей появились слова, отличные от традиционной обработки данных, в частности, «вести себя», «реагировать», «самоорганизовывать», «обучать», «обобщать» и «забывать». Такие слова характерны для интеллектуальных систем.
Наиболее устоявшимся является мнение, что интеллект тесно связан с представлением и использованием знаний, машинным творчеством, и затрагивает такие направления, как инженерия знаний, представление знаний, роботы, искусственные нейронные сети, машинное обучение, глубокое обучение, нейронный процессор.
Направление «инженерия знаний» объединяет задачи получения знаний из простой информации, их систематизации и использования. Это направление исторически связано с созданием экспертных систем – программ, использующих специализированные базы знаний для получения достоверных заключений по какой-либо проблеме.
Производство знаний из данных – одна из базовых проблем интеллектуального анализа данных. Существуют различные подходы к решению этой проблемы, в том числе – на основе нейросетевой технологии, использующие процедуры вербализации нейронных сетей.
К области машинного обучения относится большой класс задач на распознавание образов. Например, это распознавание символов, рукописного текста, речи, анализ текстов.
Нейронные сети используются для решения нечётких и сложных проблем, таких как распознавание или кластеризация объектов.
Природа человеческого творчества ещё менее изучена, чем природа интеллекта. Тем не менее, эта область существует, и в ней поставлены проблемы написания компьютером музыки, литературных произведений (например, стихов или вариаций на темы сказок), художественное творчество. Создание реалистичных образов широко используется в кино и индустрии игр.
Отдельно выделяется изучение проблем технического творчества систем искусственного интеллекта. Теория решения изобретательских задач, предложенная в 1946 году российским изобретателем Г. С. Альтшуллером, положила начало таким исследованиям [16].
В процессе работы над искусственным интеллектом (ИИ) появились новые виды информации, алгоритмы работы с ними, новые методы получения и обработки данных.
Читать дальшеИнтервал:
Закладка: