Компьютерра - Журнал Компьютерра №755
- Название:Журнал Компьютерра №755
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Компьютерра - Журнал Компьютерра №755 краткое содержание
- На обложку вынесено интервью с Хоконом Ли, создателем CSS, ныне работающим в должности CTO в компании Opera
Software, производящей браузер Opera.
- Берд Киви рассказал грустную историю про звукозаписывающую индустрию,
которая в погоне за громкостью звучания стала гробить качество собственной продукции.
- Евгений Козловский
рассказывает про плазменные телевизоры, Юрий Ревич - про телевидение вообще, а Сергей Голубицкий призывает на помощь
коллективный разум, дабы найти решение проблемы интернет-зависимости, коей он по собственному признанию также
подвержен.
- Алекс Экслер тестирует универсальные пульты дистанционного управления, позволяющие командовать всей
многочисленной армией проигрывателей, телевизоров, ресиверов, проекторов и прочей мультимедийной нечисти, живущей у него
дома.
- И не только.
Журнал Компьютерра №755 - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
В цифровом видеосигнале аналоговые уровни элемента строки уже не передаются непосредственно, а преобразуются в набор цифр, что позволяет значительно повысить качество передачи, исключить влияние помех и т. д., - здесь все то же самое, что для звукозаписи означал переход от виниловых пластинок к CD (и даже без пресловутой потери качества в виде "цифрового звучания": чисто цифровое ТВ-изображение, без наворотов в виде сжатия, однозначно лучше чисто аналогового). Но при попытках создания такой системы проблемы стали выскакивать одна за одной, как чертик из коробки. Казалось бы, чего там - пространственное разбиение по пикселам было с самого начала, осталось оцифровать только уровни, но это простое представление натолкнулось на необходимость обрабатывать чудовищные, даже по современным меркам, потоки информации.
Системы цветного ТВ должны были вписаться в структуру существовавших стандартов так, чтобы их можно было принимать на черно-белые приемники без дополнительных настроек. Задачка поистине головоломная - нельзя было не только существенно расширять полосу частот, поскольку частотный спектр был уже поделен, но и ломать структуру кадра. Тем не менее она была успешно решена, в результате чего появились следующие основные системы:
NTSC (National Television Standards Committee, Национальный комитет по телевизионным стандартам) - система аналогового цветного телевидения, разработанная в США. Первая передача состоялась 18 декабря 1953 года. "Базовый" NTSC M предполагает 60 полей в секунду, 525 строк с частотой цветовой поднесущей 3,58 МГц. Кроме США, этот стандарт используется в Канаде, Японии и ряде стран Латинской Америки.
PAL (Phase-Alternating Line, кодирование со сменой фазы) - европейская система аналогового цветного телевидения, разработанная в 1960-е годы немецкой компанией Telefunken. Самый распространенный вариант PAL B/G предполагает 50 полей в секунду, 625 строк с частотой цветовой поднесущей 4,43 МГц. Используется в Европе (за исключением Франции), Азии (кроме СНГ), Австралии, большей части Латинской Америки и Африки.
SECAM (от фр. Sequentiel couleur a memoire - последовательная передача цвета с памятью) - система аналогового цветного телевидения, разработанная в 1958 г. французским инженером Анри де Франсом. Предполагает 625 строк при 50 полях в секунду, как и PAL, но отличается способом представления цветоразностной информации. Используется в СНГ, Франции и в части государств Африки (в основном бывших французских колониях). Принятие SECAM у нас и во Франции было обусловлено в основном не техническими (лучшая помехоустойчивость) соображениями, а политическими: в СССР для невозможности приема западного ТВ на отечественные приемники (а еще и потому, что французы продали лицензию задешево, и не надо было ничего изобретать "на коленке"), а во Франции для защиты внутреннего рынка. Более 50% телевизоров во всем мире рассчитаны на стандарт NTSC, на втором месте система PAL, а SECAM - на третьем.
С развитием микроэлектроники и созданием стандартных декодеров для различных стандартов, упакованных в одну микросхему, сложность схем перестала играть роль и все современные телевизоры являются мультистандартными - как правило, пользователь и не знает, в какой именно системе вещания и цветности идет видеосигнал из конкретного источника (правда, при записи на видеомагнитофон нередко приходится разбираться - там мультисистемность может быть ограничена). Эфирное вещание у нас по-прежнему осуществляется в системе SECAM, а вот кабельные каналы иногда представляют собой довольно пеструю картину.

В "базовом" стандарте NTSC M, как мы уже говорили, число строк равно 525 по (примерно) 700 элементов в каждой (в некоторых стандартах принимается точное число 704). Соответственно, оцифрованный кадр будет иметь размер 525х700 = 367500 пикселов. Если принять, как обычно, что каждый пиксел кодируется тремя байтами (то есть может принимать любое значение из 16,7 млн. вариантов оттенков, соответствующих модели True Color), то один такой кадр займет на носителе примерно 1,1 мегабайта. В стандарте NTSC каждую секунду проходит 30 кадров, то есть мы имеем дело с потоком данных 33 Мбайт/с (или около 260 Мбит/с), а полнометражный (на 1,5 часа) несжатый фильм займет на диске почти 180 Гбайт! Даже понизив разрешение до убогих 352х288 (как это делается в Video CD) и ограничив себя при этом черно-белым изображением (по одному байту на пиксел), мы все равно получим поток около 20 Мбит/с и общий объем фильма примерно в 15 Гбайт, что уже требует как минимум HD DVD в качестве носителя.
Известно, что к потерям цветовой информации человек гораздо менее чувствителен, чем к потерям яркостной, и первую можно частично удалить. Можно выбросить цвет, например, для каждой второй строки и каждой второй точки по горизонтали (такой способ кодирования еще обозначают как 4:2:2), получив в результате около 1,5 байт на пиксел вместо стандартных трех. Но принципиально, как видим, само по себе такое двукратное снижение потока данных проблемы не решает - оно лишь используется в совокупности с другими алгоритмами сжатия.
Потому варианты представления видео в цифровом виде без сжатия никогда даже не рассматривались - за исключением разве что не получившего распространения формата Digital VHS для записи с видеокамеры на аналоговую кассету или очень коротких (порядка минуты и менее) клипов в формате "несжатого" AVI, чаще всего безжалостно усеченных по разрешению до упомянутых 384x288. В настоящее время и AVI практически не встречается в варианте без сжатия - обычно в нем применяется JPEG (точнее, его вариант для движущихся изображений под названием Motion JPEG), что позволяет снизить объемы информации без особой потери качества от 5 до 10 раз.
Но и это слишком много даже для новых носителей Blu-ray, имеющих емкость 27 Гбайт (потому что мы рассматривали "базовый" NTSC, а это уже прошлый век - для HDTV, телевидения высокой четкости, все объемы информации следует умножать примерно на 3–6 в зависимости от формата). И задача эффективного сжатия видео, которая встала перед производителями оборудования при переходе на "цифру" с самого начала, когда о гигабайтных носителях даже не мечтали, как никогда актуальна и по сей день[Заметим, что любым существующим алгоритмам сжатия очень далеко до связки "человеческий глаз-мозг". Имея на входе поток информации в сотни мегабит в секунду, сислтема по зрительному нерву от глаза к мозгу "качает" всего 50–70 бит в секунду (быстрее она работать просто не способна). И тем не менее распознавание деталей производится практически без потерь!].
Читать дальшеИнтервал:
Закладка: