Владимир Большаков - КОМПАС-3D для студентов и школьников. Черчение, информатика, геометрия
- Название:КОМПАС-3D для студентов и школьников. Черчение, информатика, геометрия
- Автор:
- Жанр:
- Издательство:БХВ-Петербург
- Год:2010
- Город:СПб
- ISBN:978-5-9775-0602-1
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Владимир Большаков - КОМПАС-3D для студентов и школьников. Черчение, информатика, геометрия краткое содержание
Демонстрируется эффективная компьютерная поддержка курсов черчения, информатики и геометрии на базе свободно распространяемой системы КОМПАС-3D LT. Описываются общие сведения и работа с системой, приводятся основные понятия трехмерного моделирования геометрических объектов. Подробно рассматриваются создание трехмерных моделей деталей и их проекций, нанесение размеров, изображение резьбовых соединений, создание сборок. Показаны возможности применения КОМПАС-3D LT в решении задач графической обработки информации и геометрического трехмерного моделирования. Приводятся примеры решения планиметрических задач и создания 3D-моделей элементарных геометрических тел. В приложениях приводятся эскизные и тестовые задания. DVD содержит дистрибутивы рассматриваемых программ и десятки вариантов практических заданий по всем упоминаемым в книге темам.
Для студентов и преподавателей вузов и колледжей, учащихся и учителей общеобразовательных школ, руководителей курсов повышения квалификации.
КОМПАС-3D для студентов и школьников. Черчение, информатика, геометрия - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:

Решение. В данном примере графическое решение получается в результате построения параметрических изображений. Рассмотрим этапы решения примера, показанные на рис. 11.9:
□ а — строится окружность и отрезок заданных размеров. Положение окружности фиксируется привязками к взаимно перпендикулярным отрезкам;
□ б — из точки D проводится дуга с центром в точке А;
□ в — точка дуги В привязкой Точка на кривойперемещается на окружность. Концы отрезков из точек А и K совмещаются с точкой В. В результате точка В может перемещаться по окружности, при этом длины отрезков АВ и KB будут изменяться;
□ г — проводится отрезок DC, параллельный и равный отрезку АВ. Точки пересечения отрезков BK и АС с окружностью еще не совпадают;
□ д — точки пересечения отрезков BK и АС с окружностью объединяются в точке Е, за счет изменения геометрии изображения на рис. 11.10, г . Измеряется длина отрезка BK = 35 мм.
Условие. Трапеция AEFG с основаниями ЕF и AG расположена в квадрате ABCD со стороной 14 так, что точки E, F и G лежат на сторонах AB, BC и CD соответственно (рис. 11.10). Диагонали AF и EG перпендикулярны, а EG = 10√2. Найти периметр трапеции.

Решение. На рис. 11.10, а показано, что трапеция с взаимно перпендикулярными диагоналями имеет равные по длине боковые стороны, а точка пересечения диагоналей располагается на отрезке, соединяющем середины параллельных сторон трапеции. На рис. 11.10, б выполнены построения по размерам стороны AF и стороны EG, которая симметрична AF относительно отрезка BD, с помощью команды Симметрия. На рис. 11.10, в показаны измеренные длины сторон трапеции, что позволяет найти периметр трапеции, равный 45.
11.3. Сведение стереометрических задач к планиметрическим
Основной способ решения стереометрических задач — сведение их к планиметрическим. Для этого можно применить метод проекций, заключающийся в проецировании геометрического объекта на подходящую плоскость. Преимуществом метода проекций является то, что он позволяет отобразить на плоском рисунке и увязать друг с другом элементы объектов, не лежащие в одной плоскости. При этом если объект расположить надлежащим образом по отношению к плоскости рисунка, то искомые метрические характеристики (и линейные, и угловые) проецируются на подходящую плоскость в заранее предусмотренном виде, например в натуральную величину.
Условие. Дана правильная пятиугольная пирамида ABCDEF. Радиус окружности, описанной вокруг основания АВCDE, равен 16 мм. Высота пирамиды 25 мм. Определить следующие метрические характеристики:
□ длину бокового ребра AF и угол его наклона к основанию;
□ расстояние от вершины В до противоположной грани и высоту этой грани;
□ угол между гранями с общим ребром AF и расстояние от этого ребра до ребра CF ;
□ диаметры вписанной в пирамиду и описанной вокруг пирамиды сфер;
□ угол между ребрами BF и EF, соединяющими вершину пирамиды с противолежащими вершинами основания;
□ угол между боковыми гранями Е = BCF и Q = DEF, не имеющими общего ребра.
Решение примера представлено на рис. 11.11.

Глава 12
Создание 30-моделей элементарных геометрических тел
Геометрическое тело — часть пространства, ограниченная со всех сторон поверхностью.
Поверхность — это множество всех последовательных положений движущей линии. Эта линия, называемая образующей, при движении может сохранять или изменять свою форму.
Закон перемещения образующей обычно определяется другими линиями, называемыми направляющими, по которым скользит образующая при своем движении.
Рассматривая образование геометрических тел, необходимо отметить, что одно и то же геометрическое тело (а следовательно, и его модель) может быть получено различными способами.
В данной главе рассматриваются приемы создания различными способами твердотельных моделей элементарных геометрических тел — выпуклых многогранников и тел вращения.
12.1. Гранные поверхности и многогранники
Гранные поверхности — поверхности, образованные перемещением прямолинейной образующей по направляющей, представляющей собой ломаную линию. На рис. 12.1 показан пример пирамидальной и призматической поверхностей.

Пирамидальная поверхность образована движением прямолинейной образующей по ломаной направляющей, при этом одна точка, S — вершина образующей, неподвижна.
Призматическая поверхность образована движением прямолинейной образующей по ломаной направляющей, при этом образующая перемещается параллельно некоторому наперед заданному направлению.
Многогранники — замкнутые поверхности, образованные некоторым количеством граней.
Выпуклый многогранник расположен по одну сторону плоскости каждой грани многогранника. Сами грани также являются выпуклыми многогранниками.
Пирамида (рис. 12.2, а) — многогранник, у которого одна грань, принимаемая за основание, является многоугольником, а остальные грани (боковые) — треугольники с общей точкой S, называемой вершиной.
В зависимости от числа вершин у многоугольника основания, пирамиду называют: треугольной, если в основании треугольник; четырехугольной, если в основании четырехугольник, и т. д.
Правильная пирамида имеет в основании правильный многоугольник, с центром которого совпадает высота правильной пирамиды. Если пирамида является правильной, то в нее или около можно вписать или описать сферу, центр которой лежит на высоте пирамиды.
Призма (рис. 12.2, б ) — многогранник, у которого две грани — основания являются одинаковыми и взаимно параллельными многоугольниками, а остальные грани (боковые) — четырехугольниками.

Прямая призма имеет боковые ребра, которые перпендикулярны основанию.
Читать дальшеИнтервал:
Закладка: