Олег Деревенец - Песни о Паскале

Тут можно читать онлайн Олег Деревенец - Песни о Паскале - бесплатно полную версию книги (целиком) без сокращений. Жанр: comp-db. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Песни о Паскале
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    4.5/5. Голосов: 21
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Олег Деревенец - Песни о Паскале краткое содержание

Песни о Паскале - описание и краткое содержание, автор Олег Деревенец, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Аннотация: Изложены основы программирования на языке Паскаль. По ходу обучения решаются десятки задач (использован проектный подход). От читателя не требуется начальных познаний в программировании, но круг затронутых тем ориентирует его в профессиональную область. Книга адресована школьникам средних и старших классов, желающим испытать себя в «олимпийских схватках». Будет полезна студентам-первокурсникам и преподавателям информатики.

Песни о Паскале - читать онлайн бесплатно полную версию (весь текст целиком)

Песни о Паскале - читать книгу онлайн бесплатно, автор Олег Деревенец
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
В директорском кабинете

Редкий смельчак сунется в директорский кабинет. Но чтобы вникнуть в предстоящую задачу, нам надо тайно проникнуть к директору школы. Вот вам шапка-невидимка (ещё одна волшебная штуковина), вдохните глубже и ступайте на цыпочках за мной.

Мы находим усталого Семена Семеновича перед кипой исчерканных листков с фамилиями учеников. Чем озабочен директор? Сейчас объясню. В начале учебного года Семен Семенович распорядился, чтобы все ученики вступили в какой-либо кружок или спортивную секцию – по желанию. А теперь, спустя пару месяцев, он проверяет исполнение приказа. Директор намерен наказать тех, кто не исполнил распоряжения, и поощрить состоящих в нескольких кружках или секциях. Но, промучившись неделю со списками кружков, он готов уж отказаться от своей затеи, – задача не поместилась в директорской голове. Судите сами: ведь в школе двести пятьдесят учеников! Спасайте Семена Семеновича!

Первым делом, первым делом – оцифровка

Директорскую задачу поручим компьютеру, а тому сподручней орудовать с числами. Заменим фамилии учеников числами, назначив каждому ученику уникальный, несовпадающий с другими, номер. Переход от фамилий к номерам и обратно – простая задачка, её мы оставим Семену Семеновичу. Таким образом, наш входной файл со списками учеников будет содержать по одной строке для каждого кружка, где перечисляются через пробел номера учеников, состоящих в этом кружке. Вот пример входного файла для трех кружков.

2 11 4 13

9 17 12 11 3 5 18

14 2 13 15 20

Здесь в первый кружок записались 4 школьника, во второй – 7, а в третий – 5 учеников. Как видите, их номера перечислены в произвольном порядке, что затрудняет ручную обработку таких списков. От компьютера требуется выявить номера учеников (от 1 до 250), которых нет в таком файле. Хочется найти простое решение, а оно возможно лишь с применением нового для нас типа данных – множества.

Множества глазами математика

Слово «множество» намекает на большое количество чего-либо. Чего именно? А все равно! Множества придумали математики, а им безразлично, что считать. Так подать сюда математика, и пусть ответит за всех! Скоро явился математик, взял два кружочка – черный и белый – и, протерев свои толстые очки, стал объяснять. Вот суть его речи.

Рис 80 Множества точек черного B и белого W кругов Вы полагаете что - фото 119
Рис. 80 – Множества точек черного (B) и белого (W) кругов

Вы полагаете, что это кружочки? Нет, друзья, это два множества точек, – одно принадлежит черному кругу, другое – белому. Обозначим первое из них латинской буквой B (от Black – «черный»), а второе буквой W (от White – «белый»). Итак, черные и белые точки этих кружков назовём элементами множеств. Сколько там этих точек? Доказано, что бесконечно много, но к свойствам множеств это не имеет отношения. Что же это за свойства?

Добавление к множеству существующих элементов

Покройте черный круг таким же или меньшим черным кругом, или почеркайте его углем, – заметите разницу? Если на белый круг наложить такой же, или почеркать его мелом, – тоже не увидите изменений. Значит, множество не изменится при добавлении к нему элементов, уже входящих в это множество. На языке математики это свойство выразится так:

B + B = B

или так:

W + W + W = W

Не правда ли, странная арифметика?

Объединение множеств

Продолжим наши мысленные опыты и перекрасим оба круга в серый цвет. Будем считать их теперь одной фигурой, разорванной на части.

Рис 81 Объединение непересекающихся множеств G B W Так мы получили - фото 120
Рис. 81 – Объединение непересекающихся множеств G = B + W

Так мы получили новое множество, представляющее сумму или объединение двух предыдущих. Обозначим это новое множество буквой G (от Gray – «серый») и выразим то, что сделали, формулой.

G = B + W

Очевидно, что число точек во вновь образованном множестве равно их сумме в двух исходных. Пока в этом нет ничего интересного, – ведь исходные множества B и W, как говорят математики, не пересекаются. Сблизим круги так, чтобы добиться их частичного перекрытия (рис. 82).

Рис82 Объединение пересекающихся множеств G B W Теперь количество - фото 121
Рис.82 – Объединение пересекающихся множеств G < B + W

Теперь количество точек в объединенном множестве будет меньше, чем в двух исходных по отдельности.

G < B + W

В общем случае при объединении множеств (как пересекающихся, так и не пересекающихся) соблюдается правило.

G ≤ B + W

Пересечение множеств

Иногда математиков (и не только их) интересует область пересечения множеств, отметим её серым цветом (рис. 83).

Рис83 Пересечение множеств G B W Операцию пересечения множеств - фото 122
Рис.83 – Пересечение множеств G = B * W

Операцию пересечения множеств обозначают знаком умножения.

G = B • W

Количество точек в пересечении, как понимаете, не может быть больше, чем в любом из исходных множеств B и W. Для этого случая справедливо утверждение: пересечение множеств не больше любого из них.

B • W ≤ B и B • W ≤ W

Вычитание множеств

О солнечных и лунных затмениях слышали все, а кто-то и наблюдал их. Для математика это зримые примеры вычитания множеств; взгляните на рис. 84 – чем не затмения? Серую область можно трактовать как результат вычитания одного круга из другого. На левом рисунке белый круг «отгрыз» часть черного, превратив его в серую область, а на правом – наоборот. Подобающие этим случаям формулы будут таковы.

G = B – W или G = W – B

Рис84 Вычитание множеств А если вычитаемый круг окажется больше того из - фото 123
Рис.84 – Вычитание множеств

А если вычитаемый круг окажется больше того, из которого вычитают, и полностью поглотит его? В алгебре разность получится отрицательной, а здесь? Ничего подобного! При вычитании большего множества из меньшего или равного ему получается пустое множество, оно обозначается символом Ø. Из пустого множества тоже можно вычитать, и результатом опять будет пустое множество.

(B – B) – B = Ø

(Ø – W) – B = Ø

Вот такими интересными свойствами обладают множества!

Подмножества и надмножества

На рис. 85 белый круг полностью поглощен черным. Тогда говорят, что множество точек белого круга составляет подмножество точек черного. Или так: множество точек черного круга является надмножеством точек белого. Математик выразит это формулой:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Олег Деревенец читать все книги автора по порядку

Олег Деревенец - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Песни о Паскале отзывы


Отзывы читателей о книге Песни о Паскале, автор: Олег Деревенец. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x