Олег Деревенец - Песни о Паскале

Тут можно читать онлайн Олег Деревенец - Песни о Паскале - бесплатно полную версию книги (целиком) без сокращений. Жанр: comp-db. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Песни о Паскале
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    4.5/5. Голосов: 21
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Олег Деревенец - Песни о Паскале краткое содержание

Песни о Паскале - описание и краткое содержание, автор Олег Деревенец, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Аннотация: Изложены основы программирования на языке Паскаль. По ходу обучения решаются десятки задач (использован проектный подход). От читателя не требуется начальных познаний в программировании, но круг затронутых тем ориентирует его в профессиональную область. Книга адресована школьникам средних и старших классов, желающим испытать себя в «олимпийских схватках». Будет полезна студентам-первокурсникам и преподавателям информатики.

Песни о Паскале - читать онлайн бесплатно полную версию (весь текст целиком)

Песни о Паскале - читать книгу онлайн бесплатно, автор Олег Деревенец
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

B > W

Рис85 Надмножество B и подмножество W А если круги совпадают и полностью - фото 124
Рис.85 Надмножество (B) и подмножество (W)

А если круги совпадают и полностью перекрывают друг друга? Тогда говорят, что множества равны, и любое из них является и подмножеством, и надмножеством другого. В общем случае:

если B ≥ W, то B является надмножеством W;

если B ≤ W, то B является подмножеством W.

Числовые множества

Мы рассмотрели несметные множества бесконечно маленьких точек. Но компьютеры ещё не умеют работать с бесконечностями. Так умерим свой аппетит и перейдем к множествам с конечным числом элементов. Поступим так: вместо раскраски кругов расставим на них ряд жирных точек и пронумеруем их числами от 1 до 9 (рис. 86). В ходе последующих опытов нас будут интересовать лишь эти избранные точки (то есть, числа).

Рис86 Множества чисел Так мы получили два конечных множества чисел Одно - фото 125
Рис.86 – Множества чисел

Так мы получили два конечных множества чисел. Одно из них, обозначенное буквой A, содержит числа 8, 7, 9, 3, 5, 2. Другое обозначено буквой B и включает числа 5, 4, 6, 1, 2. Эти множества математики записали бы так:

A = { 8, 7, 9, 3, 5, 2 }

B = { 5, 4, 6, 1, 2 }

Для записи множеств они используют фигурные скобки. Обратите внимание: числа в скобках следуют в произвольном порядке. Это значит, что порядок перечисления элементов множества не важен. Учтите также, что числа 2 и 5 входят в оба множества.

Подобно точкам на круге, каждый элемент числового множества уникален, иными словами, может входить в множество лишь единожды. Вспомните нашу попытку покрасить углем черный круг, – добавление к множеству существующих в нём элементов не изменяет его. Этим же свойством обладают и числовые множества. Например, для нашего случая справедливо следующее.

A + { 8, 7 } = A

Множество A после объединения с множеством {8,7} не изменилось, поскольку уже содержало эти числа.

С числовыми множествами поступают так же, как и с бесконечными: объединяют, пересекают, вычитают и сравнивают. Вот примеры этих операций для нашего случая.

Объединение множеств содержит все числа исходных множеств, при этом повторения (дубликаты) отбрасывают:

G = A + B = { 8, 7, 9, 3, 5, 2 } + { 5, 4, 6, 1, 2 } = { 8, 7, 9, 3, 5, 2, 4, 6, 1 }

Хотя числа 2 и 5 входили в оба исходных множества, в объединении они встречаются по разу.

Пересечение множеств содержит только числа, входящие в оба множества:

A * B = { 8, 7, 9, 3, 5, 2 } * { 5, 4, 6, 1, 2 } = { 5, 2 }

Разность множеств A–B содержит числа, состоящие в множестве A, но отсутствующие в множестве B:

A – B = { 8, 7, 9, 3, 5, 2 } – { 5, 4, 6, 1, 2 } = { 8, 7, 9, 3 }

Разность множеств B–A содержит числа, состоящие в множестве B, но отсутствующие в множестве A:

B – A = { 5, 4, 6, 1, 2 } – { 8, 7, 9, 3, 5, 2 } = { 4, 6, 1 }

Эти «вычисления» легко проверить по рис. 86.

Мощность множества, полные и неполные множества

Мощность множества – это наибольшее количество элементов, которое может содержаться в нём. В нашем числовом примере мощность множества равна девяти.

Множество, содержащее все возможные свои элементы, называют полным. В нашем случае полным является объединение множеств A+B.

Множество, содержащее не все возможные элементы, является неполным. Так, множества A и B по отдельности – неполные.

Все это рассказал нам математик. А что же Семен Семенович, или мы забыли о директоре? Нет, конечно, но к директорской задаче мы вернемся после ознакомления с «паскалевскими» множествами.

Итоги

• Множество – это совокупность различимых объектов (точек, чисел, предметов), которую мы воспринимаем как нечто целое. Отдельные объекты множества называют его элементами.

• К множествам применим ряд операций: объединение, пересечение, вычитание, сравнение.

• Объединение двух множеств содержит по одному элементу из каждого исходного множества.

• Пересечение двух множеств содержит только общие их элементы. Если таких элементов нет, пересечение будет пустым.

• Разность множеств содержит элементы уменьшаемого множества за исключением элементов вычитаемого множества.

• Первое множество является подмножеством второго, если все элементы первого принадлежат второму. И тогда второе множество будет надмножеством первого. Множества совпадают, если содержат одни и те же элементы.

А слабо?

А) Полицейская база данных некоторого государства содержит номера всех автомобилей, сгруппированные в ряд множеств. Три множества составлены по типам автомобилей: легковые, грузовые, автобусы. Шесть множеств образованы по цвету автомобилей: множества белых, черных, желтых, красных, синих и зеленых.

• Пересекается ли множество легковых автомобилей с множеством грузовых? А множество желтых автомобилей с множеством черных?

• Может ли быть непустым пересечение множества желтых автомобилей с множеством автобусов?

• Свидетель дорожно-транспортного происшествия сообщил, что с места преступления скрылся грузовой автомобиль синего цвета. Как вычислить группу подозреваемых автомобилей?

• На улице висит знак: грузовым проезд запрещен. Как определить множество автомобилей, въезд которым разрешен?

Б) Два государства, назовем их A и B, спорят о некой территории, – каждое считает ее своей. Нарисуйте на листочке предполагаемую карту, заштрихуйте спорную область, а затем объясните:

• Как вычислить спорную область государств?

• Как вычислить бесспорную область, включая оба государства?

• Заштрихуйте область, отвечающую формуле G = (A-B) + (B-A).

• Заштрихуйте область, отвечающую формуле G = A+B – A•B. Совпадает ли она с той, что вычислена по предыдущей формуле?

В) Дайте ответы на следующие вопросы.

• Является ли множество ваших одноклассников подмножеством учеников вашей школы?

• Пересекается ли множество ваших друзей с множеством ваших одноклассников?

• Является ли множество ваших друзей подмножеством ваших одноклассников?

Глава 36

Множества в Паскале

Зная силу математических множеств Никлаус Вирт отец языка Паскаль ввел в - фото 126

Зная силу математических множеств, Никлаус Вирт – «отец» языка Паскаль – ввел в язык тип данных множество и предусмотрел операции с ним.

Элементами множеств здесь могут быть числа, символы и булевы данные – то есть порядковые типы данных размером в один байт. Стало быть, мощность множеств в Паскале не превышает 256.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Олег Деревенец читать все книги автора по порядку

Олег Деревенец - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Песни о Паскале отзывы


Отзывы читателей о книге Песни о Паскале, автор: Олег Деревенец. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x