Роман Зыков - Роман с Data Science. Как монетизировать большие данные [litres]

Тут можно читать онлайн Роман Зыков - Роман с Data Science. Как монетизировать большие данные [litres] - бесплатно ознакомительный отрывок. Жанр: comp-db, издательство Издательство Питер, год 2021. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Роман с Data Science. Как монетизировать большие данные [litres]
  • Автор:
  • Жанр:
  • Издательство:
    Издательство Питер
  • Год:
    2021
  • Город:
    Санкт-Петербург
  • ISBN:
    978-5-4461-1879-3
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Роман Зыков - Роман с Data Science. Как монетизировать большие данные [litres] краткое содержание

Роман с Data Science. Как монетизировать большие данные [litres] - описание и краткое содержание, автор Роман Зыков, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Как выжать все из своих данных? Как принимать решения на основе данных? Как организовать анализ данных (data science) внутри компании? Кого нанять аналитиком? Как довести проекты машинного обучения (machine learning) и искусственного интеллекта до топового уровня? На эти и многие другие вопросы Роман Зыков знает ответ, потому что занимается анализом данных почти двадцать лет. В послужном списке Романа – создание с нуля собственной компании с офисами в Европе и Южной Америке, ставшей лидером по применению искусственного интеллекта (AI) на российском рынке. Кроме того, автор книги создал с нуля аналитику в Ozon.ru.
Эта книга предназначена для думающих читателей, которые хотят попробовать свои силы в области анализа данных и создавать сервисы на их основе. Она будет вам полезна, если вы менеджер, который хочет ставить задачи аналитике и управлять ею. Если вы инвестор, с ней вам будет легче понять потенциал стартапа. Те, кто «пилит» свой стартап, найдут здесь рекомендации, как выбрать подходящие технологии и набрать команду. А начинающим специалистам книга поможет расширить кругозор и начать применять практики, о которых они раньше не задумывались, и это выделит их среди профессионалов такой непростой и изменчивой области. Книга не содержит примеров программного кода, в ней почти нет математики.
В формате PDF A4 сохранен издательский макет.

Роман с Data Science. Как монетизировать большие данные [litres] - читать онлайн бесплатно ознакомительный отрывок

Роман с Data Science. Как монетизировать большие данные [litres] - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Роман Зыков
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В сводных таблицах есть два типа данных: измерения (dimensions) и показатели (или меры, measures). Измерения представлены в формате системы координат. Когда я слышу слово «измерения», я представляю себе три оси координат, выходящие из одной точки перпендикулярно по отношению друг другу – как нас учили на уроках геометрии. Измерений (осей) может быть гораздо больше трех. Их можно будет использовать в виде столбцов, строк или фильтров сводной таблицы, но их нельзя помещать в ячейки. Примеры измерений:

• Дата и время.

• Тип клиента.

• Статус клиента.

Показатели – это уже статистики, которые будут рассчитываться в сводной таблице, когда вы будете «вращать» или менять измерения. Они, как правило, агрегатные: суммы, средние, количество уникальных значений (distinct count), количество непустых значений (count). Примеры показателей для нашей задачи:

• Сумма заказов.

• Средний чек заказа.

• Количество заказов (уникальность здесь обеспечена тем, что одна строка – это заказ, дублей заказов нет).

• Количество уникальных клиентов (нужно считать число уникальных ID, так как один клиент может сделать несколько заказов, и его посчитают несколько раз).

ID заказов и ID клиентов могут быть как измерениями – тогда вы сможете считать статистику по конкретным заказам или клиентам, так и показателями – тогда можно просто посчитать количество заказов или клиентов. Это целиком зависит от вашей задачи, оба способа работают.

Аналитик определяет для каждого столбца, являются ли данные в нем измерениями или показателями, а также какие статистики по показателям ему нужны. Подготовительные работы закончены, теперь время сформулировать гипотезы и для каждой из них определить один или несколько срезов, которые подтвердят гипотезу или опровергнут. Понятие среза происходит из многомерной природы сводных таблиц. Представьте себе трехмерный предмет, имеющий следующие измерения: длину, ширину и высоту. Пусть это будет кусок сливочного масла. Вы берете нож, разрезаете его и получаете срез, причем плоскость среза перпендикулярна оси, которую вы фиксируете. То же самое вы проделываете, когда работаете со сводной таблицей – делаете срез многомерных данных. Осей может быть много, это число равно числу измерений – вот откуда берется многомерность. Место на оси (измерение), перпендикулярно которой режете, попадет в фильтр отчета как значение. Вы фиксируете его. Измерения, которые будут лежать в плоскости среза, будут столбцами и строками нашей таблицы. Если фильтр отчета не используется, то все данные будут спроецированы на наш срез при помощи операции агрегации, которая для каждого показателя выбирается индивидуально (суммы, средние, количество).

Аналитик формулирует две гипотезы относительно падения продаж:

• Изменение поведения вызвано одним из типов клиента. Для этой гипотезы одно из измерений – тип клиента.

• Изменение поведения вызвано одной из групп лояльности. Для этой гипотезы одно из измерений – статус лояльности клиента.

Так как у нас произошли изменения во времени, то нам понадобится еще одно измерение – время. Итак, гипотеза и нужный срез данных сформулированы, а дальше дело техники: мышью перетащить нужные измерения, например, дату в столбцы, тип клиента в строки. Заполнить таблицу нужными показателями и проверить, подтверждается ли проверяемая гипотеза цифрами или нет. Правильность гипотезы желательно проверить подходящим статистическим критерием для гипотез, что в реальности делается довольно редко.

Гипотезы можно формулировать и проверять последовательно, а когда наработается опыт, то они будут формулироваться на уровне подсознания. Аналитик будет играть ими, чтобы найти самую вероятную причину проблемы или успеха: делать первый срез, а потом добавлять измерения, пересекая их со старыми, и изменять показатели.

Если бы не было электронных таблиц и средств визуального анализа на сводных таблицах, то скорость подобного типа анализа была бы в десятки раз ниже. Аналитику пришлось бы программировать каждый срез, например, через оператор GROUP BY в SQL или pivot в питоновской библиотеке pandas. Со сводными таблицами аналитик работает со скоростью своей мысли.

OLAP-кубы

Сводные таблицы бывают не только в электронных таблицах. Большие объемы данных туда не поместить – они будут очень медленно работать, если вообще туда поместятся. А мы ведь хотим, чтобы все работало со скоростью мысли, не правда ли? Для этого производители софта идут на всякие ухищрения, например, размещают данные в колоночной базе данных прямо на компьютере пользователя (о преимуществах колоночных баз данных уже написано в главе про хранилища). Второй способ – делать все вычисления на серверах, а пользователю предоставить туда доступ через интерфейс (толстый или тонкий клиент). Именно так были придуманы кубы OLAP (On-Line Analytical Processing – интерактивный анализ данных).

История их появления очень интересна как минимум тем, что к этому приложил руку наш бывший соотечественник – Михаил (Моша) Пасуманский. Михаил переехал в Израиль из Санкт-Петербурга в 1990 году. Там он написал аналитическое приложение «Панорама». В 1995 году они выпустили первую версию. В 1996 году компанию купила Microsoft, которой нужно было подобное решение для новой версии SQL Server. После интеграции системы в софт Microsoft появился язык программирования для работы с OLAP-кубами, который называется MDX (Multidimensional Expressions), чьим автором является Михаил Пасуманский. Этот язык является стандартом для работы с OLAP-кубами, и его поддерживают очень многие вендоры. Сервис OLAP-кубов теперь называется Analysis Services.

Мы уже рассмотрели, как работают сводные таблицы. Теперь посмотрим, как проблема производительности решается в OLAP-кубах, которые эти сводные таблицы умеют очень быстро рассчитывать. Я много работал с технологиями Microsoft по OLAP-кубам, поэтому буду опираться на свой опыт. Центральным звеном любого OLAP-куба является таблица фактов, которую мы рассмотрели на примерах построения сводных таблиц чуть ранее. Однако есть небольшое, но важное отличие: таблица фактов, как правило, не соединяется со справочниками, она загружается в кубы отдельно от них.

Для этого в хранилище данные готовятся по схеме «звезда» (рис. 7.4): таблица фактов соединяется по полям, содержащим ID (ключи), со справочниками, как показано на рисунке. Существует правило – все измерения лучше держать в отдельных справочниках. Это сделано для того, чтобы можно было их обновлять независимо от таблицы фактов. После подготовки нужных данных в программе-дизайнере нужно отметить, какие таблицы являются таблицами измерений, а какие – таблицами фактов. Там же в настройках указывается, какие показатели необходимо рассчитать. Первичная обработка куба заключается в чтении всех данных из хранилища и помещении их в специальные структуры, которые очень быстро работают с расчетом сводных таблиц. Сначала читаются и обрабатываются все измерения, и только после этого таблица фактов. Но самое интересное происходит потом, когда нужно добавить в куб новые данные.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Роман Зыков читать все книги автора по порядку

Роман Зыков - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Роман с Data Science. Как монетизировать большие данные [litres] отзывы


Отзывы читателей о книге Роман с Data Science. Как монетизировать большие данные [litres], автор: Роман Зыков. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x