Роман Зыков - Роман с Data Science. Как монетизировать большие данные [litres]

Тут можно читать онлайн Роман Зыков - Роман с Data Science. Как монетизировать большие данные [litres] - бесплатно ознакомительный отрывок. Жанр: comp-db, издательство Издательство Питер, год 2021. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Роман с Data Science. Как монетизировать большие данные [litres]
  • Автор:
  • Жанр:
  • Издательство:
    Издательство Питер
  • Год:
    2021
  • Город:
    Санкт-Петербург
  • ISBN:
    978-5-4461-1879-3
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Роман Зыков - Роман с Data Science. Как монетизировать большие данные [litres] краткое содержание

Роман с Data Science. Как монетизировать большие данные [litres] - описание и краткое содержание, автор Роман Зыков, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Как выжать все из своих данных? Как принимать решения на основе данных? Как организовать анализ данных (data science) внутри компании? Кого нанять аналитиком? Как довести проекты машинного обучения (machine learning) и искусственного интеллекта до топового уровня? На эти и многие другие вопросы Роман Зыков знает ответ, потому что занимается анализом данных почти двадцать лет. В послужном списке Романа – создание с нуля собственной компании с офисами в Европе и Южной Америке, ставшей лидером по применению искусственного интеллекта (AI) на российском рынке. Кроме того, автор книги создал с нуля аналитику в Ozon.ru.
Эта книга предназначена для думающих читателей, которые хотят попробовать свои силы в области анализа данных и создавать сервисы на их основе. Она будет вам полезна, если вы менеджер, который хочет ставить задачи аналитике и управлять ею. Если вы инвестор, с ней вам будет легче понять потенциал стартапа. Те, кто «пилит» свой стартап, найдут здесь рекомендации, как выбрать подходящие технологии и набрать команду. А начинающим специалистам книга поможет расширить кругозор и начать применять практики, о которых они раньше не задумывались, и это выделит их среди профессионалов такой непростой и изменчивой области. Книга не содержит примеров программного кода, в ней почти нет математики.
В формате PDF A4 сохранен издательский макет.

Роман с Data Science. Как монетизировать большие данные [litres] - читать онлайн бесплатно ознакомительный отрывок

Роман с Data Science. Как монетизировать большие данные [litres] - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Роман Зыков
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Итак, у нас есть метрика. Теперь с ее помощью мы сможем сравнивать разные модели друг с другом и понимать, какая из них лучше. Можно приступать к обучению.

ML изнутри

Практически любая ML-модель для обучения с учителем сводится к двум вещам: определение функции потерь (loss function для одного примера, cost function для множества примеров) и процедуры ее минимизации.

Например, для линейной регрессии это будет среднеквадратичная ошибка в том виде, в каком мы определили ее ранее. Чтобы найти минимум функции потерь, существуют различные процедуры оптимизации. Одна из них называется градиентным спуском (Gradient Descent), она широко применяется на практике.

Как правило, оптимизация выглядит следующим образом:

1. Коэффициенты (которые нужно подобрать) модели инициализируются нулями или случайно.

2. Вычисляется величина функции потерь (например, среднеквадратичное отклонение) и ее градиент (производная от функции потерь). Градиент нам нужен, чтобы понять, куда двигаться для минимизации ошибки.

3. Если функция потерь изменилась существенно и мы не достигли максимального числа повторений расчета, то пересчитаем коэффициенты, исходя из градиента, и идем к шагу 2.

4. Считаем, что оптимизация завершена, возвращаем модель с вычисленными коэффициентами.

Графически градиентный спуск выглядит как на рис. 8.4.

Рис 84Градиентный спуск У нас есть функция потерь и с произвольной точки мы - фото 39

Рис. 8.4.Градиентный спуск

У нас есть функция потерь, и с произвольной точки мы двигаемся в сторону ее минимума последовательно, по шагам.

У этого алгоритма есть еще две версии: стохастический градиентный спуск (SGD) и пакетный (Mini Batch Gradient Descent). Первый используется для работы с большими данными, когда мы из всего датасета используем только один пример для одной итерации обучения. Альтернативной для больших данных является пакетная версия (batch) этого алгоритма, которая вместо одного примера использует подмножество датасета.

Линейная регрессия

Самая простая и популярная модель регрессии. На самом деле ее мы затрагивали в школе, когда писали формулу линейной зависимости. Когда я учился в старших классах, она выглядела так: y = k × x + b . Это так называемая простая линейная регрессия, в ней всего одна независимая переменная.

Обычно работают с множественной линейной регрессией (multivariate linear regression), формула которой выглядит так:

Она состоит из суммы произведений коэффициентов на значение соответствующей - фото 40

Она состоит из суммы произведений коэффициентов на значение соответствующей фичи и дополнительно свободного члена (intercept). Выглядит она как прямая в случае одной независимой переменной и как гиперплоскость в случае N фич. Когда происходит обучение линейной регрессии, то гиперплоскость строится таким образом, чтобы минимизировать расстояние от точек (из датасета) до нее, что является среднеквадратичным отклонением. Самый первый вопрос, который я задаю кандидатам на должность аналитика данных, звучит так: «У вас есть результат эксперимента, точки отмечены на плоскости с двумя осями. Кто-то провел линию, их аппроксимирующую. Как понять, оптимально ли построена прямая?» Это очень хороший вопрос на понимание сути линейной регрессии.

Если данные на входе линейной регрессии были нормализованы, то чем больше коэффициент у фичи, тем большее влияние на зависимую переменную она оказывает, а значит, и на результат. Положительный коэффициент – увеличение значения фичи увеличивает значение зависимой переменной (положительная корреляция). Отрицательная – это отрицательная корреляция или отрицательная линейная зависимость.

Логистическая регрессия

Это самая популярная модель решения задач бинарной (два класса) классификации.

Допустим, у нас есть задача – разделить два класса: крестики и нолики. Я их отметил на координатной сетке, по осям отложил значения фич X1 и X2 (рис. 8.5). Легко видеть, что между крестиками и ноликами можно провести прямую, которая их разделяет. Все, что выше прямой, – нолики, ниже – крестики.

Рис 85Разделяющая прямая в задаче классификации Так работает логистическая - фото 41

Рис. 8.5.Разделяющая прямая в задаче классификации

Так работает логистическая регрессия – она ищет прямую или гиперплоскость, которая разделяет классы с минимальной ошибкой. Как результат она выдает вероятность принадлежности точки к классу. Чем ближе точка находится к разделяющей поверхности, тем менее модель уверена в своем выборе, вероятность будет приближаться к 0.5, чем дальше точка от поверхности – тем вероятность ближе к 0 или 1, в зависимости от класса. В задаче два класса, поэтому если вероятность принадлежности к одному классу равна 0.3, то ко второму 1–0.3 = 0.7. Для вычисления вероятности в логистической регрессии используется сигмоида (рис. 8.6).

Рис 86Сигмоида В этом графике в t подставляется значение из обычной линейной - фото 42

Рис. 8.6.Сигмоида

В этом графике в t подставляется значение из обычной линейной формулы с коэффициентами, как у линейной регрессии. Сама формула является уравнением той разделяющей поверхности, о которой я писал выше.

По популярности это топовая модель как среди исследователей, которые любят ее за простоту и интерпретируемость (коэффициенты такие же, как у линейной регрессии), так и среди инженеров. На очень больших нагрузках, в отличие от других классификаторов, эта простая формула легко масштабируется. И когда вас догоняет в интернете баннерная реклама, скорее всего, за ней стоит логистическая регрессия, которая до недавнего времени использовалась, например, в компании Criteo, одной из самых больших ретаргетинговых компаний в мире [54].

Деревья решений

Деревья решения (decision tree) дышат в спину линейным методам по популярности. Это очень наглядный метод (рис. 8.8), который может использоваться для задач классификации и регрессии. Самые лучшие алгоритмы классификации (Catboost, XGboost, Random Forest) основываются на нем. Сам метод нелинейный и представляет собой правила «если…, то…». Само дерево состоит из внутренних узлов и листьев. Внутренние узлы – это условия на независимые переменные (правила). Листья – это уже ответ, в котором содержится вероятность принадлежности к тому или иному классу. Чтобы получить ответ, нужно идти от корня дерева, отвечая на вопросы. Цель – добраться до листа и определить нужный класс.

Дерево строится совсем по иным принципам, чем те, которые мы рассмотрели в линейных методах. Мои дети играют в игру «вопрос-ответ». Один человек загадывает слово, а другие игроки должны с помощью вопросов выяснить его. Допустимые ответы на вопрос только да/нет. Выиграет тот, кто меньшим числом вопросов угадает ответ. С деревом аналогично – начиная от корня дерева, правила строятся таким образом, чтобы за меньшее число шагов дойти до листа.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Роман Зыков читать все книги автора по порядку

Роман Зыков - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Роман с Data Science. Как монетизировать большие данные [litres] отзывы


Отзывы читателей о книге Роман с Data Science. Как монетизировать большие данные [litres], автор: Роман Зыков. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x