Роман Зыков - Роман с Data Science. Как монетизировать большие данные [litres]

Тут можно читать онлайн Роман Зыков - Роман с Data Science. Как монетизировать большие данные [litres] - бесплатно ознакомительный отрывок. Жанр: comp-db, издательство Издательство Питер, год 2021. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Роман с Data Science. Как монетизировать большие данные [litres]
  • Автор:
  • Жанр:
  • Издательство:
    Издательство Питер
  • Год:
    2021
  • Город:
    Санкт-Петербург
  • ISBN:
    978-5-4461-1879-3
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Роман Зыков - Роман с Data Science. Как монетизировать большие данные [litres] краткое содержание

Роман с Data Science. Как монетизировать большие данные [litres] - описание и краткое содержание, автор Роман Зыков, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Как выжать все из своих данных? Как принимать решения на основе данных? Как организовать анализ данных (data science) внутри компании? Кого нанять аналитиком? Как довести проекты машинного обучения (machine learning) и искусственного интеллекта до топового уровня? На эти и многие другие вопросы Роман Зыков знает ответ, потому что занимается анализом данных почти двадцать лет. В послужном списке Романа – создание с нуля собственной компании с офисами в Европе и Южной Америке, ставшей лидером по применению искусственного интеллекта (AI) на российском рынке. Кроме того, автор книги создал с нуля аналитику в Ozon.ru.
Эта книга предназначена для думающих читателей, которые хотят попробовать свои силы в области анализа данных и создавать сервисы на их основе. Она будет вам полезна, если вы менеджер, который хочет ставить задачи аналитике и управлять ею. Если вы инвестор, с ней вам будет легче понять потенциал стартапа. Те, кто «пилит» свой стартап, найдут здесь рекомендации, как выбрать подходящие технологии и набрать команду. А начинающим специалистам книга поможет расширить кругозор и начать применять практики, о которых они раньше не задумывались, и это выделит их среди профессионалов такой непростой и изменчивой области. Книга не содержит примеров программного кода, в ней почти нет математики.
В формате PDF A4 сохранен издательский макет.

Роман с Data Science. Как монетизировать большие данные [litres] - читать онлайн бесплатно ознакомительный отрывок

Роман с Data Science. Как монетизировать большие данные [litres] - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Роман Зыков
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Если бы у меня был выбор между двумя кандидатами: первый занимает призовые места на Kaggle и имеет за плечами десятки моделей, а второй реализовал всего две, но придумал задачу, решил, внедрил ее и доказал метриками, что она зарабатывает деньги для компании, – я бы предпочел второго. Даже если ему не придется повторять на новом месте все эти этапы, я могу сделать вывод, что он способен видеть картину целиком, а значит, сможет говорить на одном языке с людьми, которые будут внедрять продукт его труда, без проблем будет понимать ограничения и требования смежных департаментов.

Искусственный интеллект

Искусственный интеллект (AI) – очень модный термин, и я его ни разу не использовал в моей книге, хотя занимаюсь именно им. Словосочетание data mining я услышал еще в начале двухтысячных, когда работал в StatSoft. За этим маркетинговым термином кроется обычный анализ данных, сделанный из нескольких компонент. Мы с коллегами шутили, что весь этот data mining настоящие спецы делают на коленке. Через некоторое время возник новый термин – машинное обучение, он гораздо лучше зашел у специалистов, потому что действительно описывал новую область. Третий термин – большие данные, хайп вокруг которых сейчас уже поутих. Просто технология не оправдала слишком больших надежд, которые были на нее возложены. Я не помню, чтобы на конференциях ACM RecSys хоть раз слышал выражение big data, хотя часть игроков, которые там участвуют, обладают очень большими данными (Amazon, Google, Netflix). Компании используют их только для брендинга и продаж своих услуг, чтобы показать, что они в тренде. Иначе их обойдут конкуренты.

Об AI широко заговорили с появлением нейронных сетей глубокого обучения (Deep Learning). Принцип работы нейрона как строительной единицы нейронной сети был заимствован из биологии. Но согласитесь, это еще не повод считать нейронную сеть интеллектом, близким хотя бы к интеллекту насекомых. Пока те операции, которые реализуются нейронными сетями, очень примитивны по сравнению с тем, на что способны даже самые примитивные живые существа (например, синтезировать новую жизнь, не говоря уже о полностью самостоятельном принятии решений). По моему мнению, человечество сможет приблизиться к созданию интеллекта, близкого к интеллекту животного, лишь тогда, когда сумеет синтезировать и обучать биологические нейронные сети, не полностью электронные.

Вместо абстрактного искусственного интеллекта я предпочитаю использовать более конкретные термины, например компьютерное зрение. Благодаря нейронным сетям именно в этой области произошел самый большой прорыв. Сейчас компьютерное зрение используется везде – от тегирования людей в мобильных телефонах и соцсетях до самоуправляемых автомобилей. Его используют и государства для выполнения полицейских функций, и коммерческие организации для решения своих задач. Мне лично нравятся примеры, когда дружба железа и софта приносит практическую пользу. Например, есть робот Stingray, который уничтожает вшей искусственно выращиваемого лосося с помощью компьютерного зрения и лазера [73]. Этот паразит является причиной массовой гибели рыбы при искусственном разведении. Например, компания «Русская аквакультура», крупнейший российский производитель искусственно выращенного лосося, в 2015 году потеряла больше 70 % рыбы, которая погибла из-за вспышки лососевой вши. Потери из-за мора компания оценивала в 1 млрд руб. [74]. А вот подводный робот позволяет решать проблему – заметив паразита на теле рыбы, он уничтожает его с помощью лазера.

Второе направление большого прорыва – роботизация. Здесь все не ограничивается только компьютерным зрением. Когда я был в музее MIT в Бостоне, то обратил внимание, что проект Boston Dynamics уходит корнями в 80-е, в лаборатории MIT. Уже тогда ученые этого лучшего университета мира занимались компьютерным зрением и управлением роботов. В те годы у них уже был прыгающий на одной палке робот, который не падал. Boston Dynamics выделились из MIT в 1992 году. Сейчас компания известна своими роботами, которые давно стали героями YouTube и бьют рекорды просмотров. Недавно Boston Dynamics купила корейская Hyundai за 1 миллиард долларов. Если честно, в такие моменты я не понимаю наших сверхбогатых соотечественников – мне кажется, гораздо интереснее вкладывать деньги в такие проекты с перспективой стать вторым Илоном Маском, чем в футбольные клубы. Несмотря на то что новаторские проекты вроде Boston Dynamics пока плохо коммерциализированы, их время еще придет – ведь туда идет человечество.

Заменит ли AI людей? Думаю, что да. И это сделает бизнес. Сам по себе бизнес подчиняется жадным алгоритмам: если есть возможность сэкономить – это будет сделано. Когда-то с целью экономии многие западные компании начали размещать производства в Юго-Восточной Азии, где труд рабочих стоил намного дешевле. С внедрением роботизации число рабочих на единицу продукции уменьшается, логистические расходы в какой-то момент становятся выше трудовых, и тогда становится выгоднее производить товар в стране, где осуществляются продажи. Как пример – создание роботизированных фабрик Speedfactory компании Adidas. Были открыты две фабрики в Германии и США в 2016 и 2017 годах [74]. Целью было сделать производство ближе к покупателю. В 2019 году компания приняла решение закрыть эти фабрики. Несмотря на эту неудачу тенденция налицо – роботизация производства будет заменять все больше людей.

Необходимые преобразования данных

Перед тем как скармливать данные моделям ML, нужно провести над ними несколько важных преобразований:

• стандартизацию данных (приведение к единой шкале);

• удаление выбросов;

• подготовку категориальных переменных;

• работу с пропущенными данными (missing data);

• сэмплинг несбалансированных классов.

Для линейных моделей можно нормализовать данные, так как часто сами данные представлены на разных шкалах. Например, в датасете есть две фичи: цена квартиры (2 000 000–100 000 000 рублей) и ее площадь (20–500 квадратных метров). Диапазон значений очень разный, поэтому коэффициенты модели теряют физический смысл. Будет невозможно сравнить влияние той или иной переменной на модель. Если использовать регуляризацию, также возникнет проблема – ненужная пессимизация коэффициентов. Есть разные варианты стандартизации, один из них – вычесть среднее и разделить на стандартное отклонение переменной. На выходе получится переменная со средним, равным нулю, и стандартным отклонением, равным 1. На ошибку линейной модели стандартизация не влияет (если без регуляризации), но есть некоторые типы методов, которые чувствительны к шкалам переменных, например метод главных компонент (PCA, о котором я рассказал в прошлой главе).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Роман Зыков читать все книги автора по порядку

Роман Зыков - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Роман с Data Science. Как монетизировать большие данные [litres] отзывы


Отзывы читателей о книге Роман с Data Science. Как монетизировать большие данные [litres], автор: Роман Зыков. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x