Уильям Стивенс - UNIX: разработка сетевых приложений
- Название:UNIX: разработка сетевых приложений
- Автор:
- Жанр:
- Издательство:Питер
- Год:2007
- Город:Санкт-Петербург
- ISBN:5-94723-991-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Уильям Стивенс - UNIX: разработка сетевых приложений краткое содержание
Новое издание книги, посвященной созданию веб-серверов, клиент-серверных приложений или любого другого сетевого программного обеспечения в операционной системе UNIX, — классическое руководство по сетевым программным интерфейсам, в частности сокетам. Оно основано на трудах Уильяма Стивенса и полностью переработано и обновлено двумя ведущими экспертами по сетевому программированию. В книгу включено описание ключевых современных стандартов, реализаций и методов, она содержит большое количество иллюстрирующих примеров и может использоваться как учебник по программированию в сетях, так и в качестве справочника для опытных программистов.
UNIX: разработка сетевых приложений - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Структуры адресов сокетов являются самоопределяющимися, поскольку они всегда начинаются с поля family
, которое идентифицирует семейство адресов, содержащихся в структуре. Более новые реализации, поддерживающие структуры адресов сокетов переменной длины, также содержат поле, которое определяет длину всей структуры.
Две функции, преобразующие IP-адрес из формата представления (который мы записываем в виде последовательности символов ASCII) в численный формат (который входит в структуру адреса сокета) и обратно, называются inet_pton
и inet_ntop
. Эти функции являются зависящими от протокола. Более совершенной методикой является работа со структурами адресов сокетов как с непрозрачными (opaque) объектами, когда известны лишь указатель на структуру и ее размер. Мы разработали набор функций sock_
, которые помогут сделать наши программы не зависящими от протокола. Создание наших не зависящих от протокола средств мы завершим в главе 11 функциями getaddrinfo
и getnameinfo
.
Сокеты TCP предоставляют приложению поток байтов, лишенный маркеров записей. Возвращаемое значение функции read может быть меньше запрашиваемого, но это не обязательно является ошибкой. Чтобы упростить считывание и запись потока байтов, мы разработали три функции readn
, writen
и readline
, которые и используем в книге. Однако сетевые программы должны быть написаны в расчете на работу с буферами, а не со строками.
Упражнения
1. Почему аргументы типа «значение-результат», такие как длина структуры адреса сокета, должны передаваться по ссылке?
2. Почему и функция readn
, и функция writen
копируют указатель void*
в указатель char*
?
3. Функции inet_aton
и inet_addr
характеризуются традиционно нестрогим отношением к тому, что они принимают в качестве точечно-десятичной записи адреса IPv4: допускаются от одного до четырех десятичных чисел, разделенных точками; также допускается задавать шестнадцатеричное число с помощью начального 0x
или восьмеричное число с помощью начального 0 (выполните команду telnet 0xe
, чтобы увидеть поведение этих функций). Функция inet_pton
намного более строга в отношении адреса IPv4 и требует наличия именно четырех чисел, разделенных точками, каждое из которых является десятичным числом от 0 до 255. Функция inet_pton
не разрешает задавать точечно- десятичный формат записи адреса, если семейство адресов — AF_INET6
, хотя существует мнение, что это можно было бы разрешить, и тогда возвращаемое значение было бы адресом IPv4, преобразованным к виду IPv6 (см. рис. А.6). Напишите новую функцию inet_pton_loose
, реализующую такой сценарий: если используется семейство адресов AF_INET
и функция inet_pton
возвращает нуль, вызовите функцию inet_aton
и посмотрите, успешно ли она выполнится. Аналогично, если используется семейство адресов AF_INET6
и функция inet_pton
возвращает нуль, вызовите функцию inet_aton
, и если она выполнится успешно, возвратите адрес IPv4, преобразованный к виду IPv6.
Глава 4
Элементарные сокеты TCP
4.1. Введение
В этой главе описываются элементарные функции сокетов, необходимые для написания полностью работоспособного клиента и сервера TCP. Сначала мы опишем все элементарные функции сокетов, которые будем использовать, а затем в следующей главе создадим клиент и сервер. С этими приложениями мы будем работать на протяжении всей книги, постоянно их совершенствуя (см. табл. 1.3 и 1.4).
Мы также опишем параллельные (concurrent) серверы — типичную технологию Unix для обеспечения параллельной обработки множества клиентов одним сервером. Подключение очередного клиента заставляет сервер выполнить функцию fork
, порождающую новый серверный процесс для обслуживания этого клиента. Здесь применительно к использованию функции fork
мы будем рассматривать модель «каждому клиенту — один процесс », а в главе 26 при обсуждении программных потоков расскажем о модели «каждому клиенту — один поток ».
На рис. 4.1 представлен типичный сценарий взаимодействия, происходящего между клиентом и сервером. Сначала запускается сервер, затем, спустя некоторое время, запускается клиент, который соединяется с сервером. Предполагается, что клиент посылает серверу запрос, сервер этот запрос обрабатывает и посылает клиенту ответ. Так продолжается, пока клиентская сторона не закроет соединение, посылая при этом серверу признак конца файла. Затем сервер закрывает свой конец соединения и либо завершает работу, либо ждет подключения нового клиента.

Рис. 4.1. Функции сокетов для элементарного клиент-серверного соединения TCP
4.2. Функция socket
Чтобы обеспечить сетевой ввод-вывод, процесс должен начать работу с вызова функции socket
, задав тип желаемого протокола (TCP с использованием IPv4, UDP с использованием IPv6, доменный сокет Unix и т.д.).
#include
int socket(int family , int type , int protocol );
Возвращает: неотрицательный дескриптор, если функция выполнена успешно, -1 в случае ошибки
Константа family
задает семейство протоколов. Ее возможные значения приведены в табл. 4.1. Часто этот параметр функции socket
называют «областью» или «доменом» ( domain ), а не семейством. Значения константы type
(тип) перечислены в табл. 4.2. Аргумент protocol
должен быть установлен в соответствии с используемым протоколом (табл. 4.3) или должен быть равен нулю для выбора протокола, по умолчанию соответствующего заданному семейству и типу.
Таблица 4.1. Константы протокола (family) для функции socket
Семейство сокетов (family) | Описание |
---|---|
AF_INET | Протоколы IPv4 |
AF_INET6 | Протоколы IPv6 |
AF_LOCAL | Протоколы доменных сокетов Unix (см. главу 14) |
AF_ROUTE | Маршрутизирующие сокеты (см. главу 17) |
AF_KEY | Сокет управления ключами |
Таблица 4.2. Тип сокета для функции socket
Тип (type) | Описание |
---|---|
SOCK STREAM | Потоковый сокет |
SOCK_DGRAM | Сокет дейтаграмм |
SOCK_SEQPACKET | Сокет последовательных пакетов |
SOCK_RAW | Символьный (неструктурированный) сокет |
Таблица 4.3. Возможные значения параметра protocol
Protocol | Значение |
---|---|
IPPROTO_TCP | Транспортный протокол TCP |
IPPROTO_UDP | Транспортный протокол UDP |
IPPROTO_SCTP | Транспортный протокол SCTP |
Не все сочетания констант family
и type
допустимы. В табл. 4.4 показаны допустимые сочетания, а также протокол, соответствующий каждой паре. Клетки таблицы, содержащие «Да», соответствуют допустимым комбинациям, для которых нет удобных сокращений. Пустая клетка означает, что данное сочетание не поддерживается.
Интервал:
Закладка: