Уильям Стивенс - UNIX: разработка сетевых приложений
- Название:UNIX: разработка сетевых приложений
- Автор:
- Жанр:
- Издательство:Питер
- Год:2007
- Город:Санкт-Петербург
- ISBN:5-94723-991-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Уильям Стивенс - UNIX: разработка сетевых приложений краткое содержание
Новое издание книги, посвященной созданию веб-серверов, клиент-серверных приложений или любого другого сетевого программного обеспечения в операционной системе UNIX, — классическое руководство по сетевым программным интерфейсам, в частности сокетам. Оно основано на трудах Уильяма Стивенса и полностью переработано и обновлено двумя ведущими экспертами по сетевому программированию. В книгу включено описание ключевых современных стандартов, реализаций и методов, она содержит большое количество иллюстрирующих примеров и может использоваться как учебник по программированию в сетях, так и в качестве справочника для опытных программистов.
UNIX: разработка сетевых приложений - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
int n;
if ((n = pthread_mutex_lock(&ndone_mutex)) != 0)
errno = n, err_sys("pthread_mutex_lock error");
В тексте книги вам будут встречаться функции, имена которые начинаются с заглавной буквы. Это наши собственные функции-обертки. Функция-обертка вызывает функцию, имеющую такое же имя, но начинающееся со строчной буквы.
При описании исходного кода, представленного в тексте книги, мы всегда ссылаемся на вызываемую функцию низшего уровня (например, socket), но не на функцию-обертку (например, Socket).
В качестве альтернативы мы можем определить новую функцию выдачи сообщений об ошибках, которая в качестве аргумента получает системный код ошибки. Однако проще всего текст будет выглядеть с использованием функции-обертки, определенной в листинге 1.4:
Pthread_mutex_lock(&ndone_mutex);
Листинг 1.4. Наша собственная функция-обертка для функции pthread_mutex_lock
//lib/wrappthread.c
72 void
73 Pthread_mutex_lock(pthread_mutex_t *mptr)
74 {
75 int n;
76 if ((n = pthread_mutex_lock(mptr)) == 0)
77 return;
78 errno = n;
79 err_sys("pthread_mutex_lock error");
80 }
Если аккуратно программировать на С, можно использовать макросы вместо функций, что обеспечивает небольшой выигрыш в производительности, однако функции- обертки редко, если вообще когда-нибудь бывают причиной недостаточной производительности программ.
Наш выбор — первая заглавная буква в названии функции — является компромиссом. Было предложено множество других стилей: подстановка префикса e перед названием функции (как сделано в [67, с. 182]), добавление _е к имени функции и т.д. Наш вариант кажется наименее отвлекающим внимание и одновременно дающим визуальное указание на то, что вызывается какая-то другая функция.
Эта технология имеет, кроме того, полезный побочный эффект: она позволяет проверять возникновение ошибок при выполнении таких функций, ошибки в которых часто остаются незамеченными, например close и listen.
На протяжении всей книги мы будем использовать эти функции-обертки, кроме тех случаев, когда нам нужно проверить ошибку явно и обрабатывать ее другим, отличным от прерывания программы, способом. Мы не приводим исходный код для всех наших собственных функций-оберток, но он свободно доступен в Интернете (см. предисловие).
Значение системной переменной Unix errno
Когда при выполнении функции Unix (например, одной из функций сокетов) происходит ошибка, глобальной переменной errnoприсваивается положительное значение, указывающее на тип ошибки, а возвращаемое значение функции обычно равно -1. Наша функция err_sysпроверяет значение переменной errnoи печатает строку с соответствующим сообщением об ошибке (например, «Время соединения истекло», если значение переменной errno равно ETIMEDOUT).
Переменная errno устанавливается равной определенному значению, только если при выполнении функции произошла какая-либо ошибка. Ее значение не определено, если функция не возвращает ошибки. Все положительные значения ошибок являются константами с именами в верхнем регистре, начинающимися на «E», и обычно определяются в заголовке . Ни одна ошибка не имеет кода 0.
Переменную errno нельзя хранить как глобальную переменную в случае множества потоков, у которых все глобальные переменные являются общими. О решении этой проблемы мы расскажем в главе 23.
На протяжении всего текста книги мы использовали фразы типа «функция connect возвращает ECONNREFUSED» для сокращенного обозначения того, что при выполнении функции произошла ошибка (обычно при этом возвращаемое значение функции равно -1), и значение переменной errnoстало равным указанной константе.
1.5. Простой сервер времени и даты
Мы можем написать простую версию сервера TCP для определения времени и даты, который будет работать с клиентом, описанным в разделе 1.2. Мы используем функции-обертки, описанные в предыдущем разделе. Код сервера приведен в листинге 1.5.
Листинг 1.5. TCP-сервер времени и даты
//intro/daytimetcpsrv.c
1 #include "unp.h"
2 #include
3 int
4 main(int argc, char **argv)
5 {
6 int listenfd, connfd;
7 struct sockaddr_in servaddr;
8 char buff[MAXLINE];
9 time_t ticks;
10 listenfd = Socket(AF_INET, SOCK_STREAM, 0);
11 bzero(&servaddr, sizeof(servaddr));
12 servaddr.sin_family = AF_INET;
13 servaddr.sin_addr.s_addr = htonl(INADDR_ANY);
14 servaddr.sin_port = htons(13); /* сервер времени и даты */
15 Bind(listenfd, (SA*)&servaddr, sizeof(servaddr));
16 Listen(listenfd, LISTENQ);
17 for (;;) {
18 connfd = Accept(listenfd, (SA*)NULL, NULL);
19 ticks = time(NULL);
20 snprintf(buff, sizeof(buff), "%.24s\r\n", ctime(&ticks));
21 Write(connfd. buff, strlen(buff));
22 Close(connfd);
23 }
24 }
10 Создание сокета TCP выполняется так же, как и в клиентском коде.
11-15 Заранее известный порт сервера (13 в случае сервера времени и даты) связывается с сокетом путем заполнения структуры адреса интернет-сокета и вызова функции bind. Мы задаем IP-адрес как INADDR_ANY, что позволяет серверу принимать соединение клиента на любом интерфейсе в том случае, если узел сервера имеет несколько интерфейсов. Далее мы рассмотрим, как можно ограничить прием соединений одним-единственным интерфейсом.
16 С помощью вызова функции listenсокет преобразуется в прослушиваемый, то есть такой, на котором ядро принимает входящие соединения от клиентов. Эти три этапа, socket, bindи listen, обычны для любого сервера TCP при создании того, что мы называем прослушиваемым дескриптором ( listening descriptor ) (в нашем примере это переменная listenfd).
Константа LISTENQвзята из нашего заголовочного файла unp.h. Она задает максимальное количество клиентских соединений, которые ядро ставит в очередь на прослушиваемом сокете. Более подробно мы расскажем о таких очередях в разделе 4.5.
17-21 Обычно процесс сервера блокируется при вызове функции accept, ожидая принятия подключения клиента. Для установки TCP-соединения используется трехэтапное рукопожатие ( three-way handshake ). Когда рукопожатие состоялось, функция accept возвращает значение, и это значение является новым дескриптором ( connfd), который называется присоединенным дескриптором ( connected descriptor ). Этот новый дескриптор используется для связи с новым клиентом. Новый дескриптор возвращается функцией acceptдля каждого клиента, соединяющегося с нашим сервером.
Стиль, используемый в книге для обозначения бесконечного цикла, выглядит так:
Читать дальшеИнтервал:
Закладка: