Миран Липовача - Изучай Haskell во имя добра!

Тут можно читать онлайн Миран Липовача - Изучай Haskell во имя добра! - бесплатно ознакомительный отрывок. Жанр: comp-programming, издательство ДМК Пресс, год 2012. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Изучай Haskell во имя добра!
  • Автор:
  • Жанр:
  • Издательство:
    ДМК Пресс
  • Год:
    2012
  • Город:
    Москва
  • ISBN:
    978-5-94074-749-9
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Миран Липовача - Изучай Haskell во имя добра! краткое содержание

Изучай Haskell во имя добра! - описание и краткое содержание, автор Миран Липовача, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
На взгляд автора, сущность программирования заключается в решении проблем. Программист всегда думает о проблеме и возможных решениях – либо пишет код для выражения этих решений.
Язык Haskell имеет множество впечатляющих возможностей, но главное его свойство в том, что меняется не только способ написания кода, но и сам способ размышления о проблемах и возможных решениях. Этим Haskell действительно отличается от большинства языков программирования. С его помощью мир можно представить и описать нестандартным образом. И поскольку Haskell предлагает совершенно новые способы размышления о проблемах, изучение этого языка может изменить и стиль программирования на всех прочих.
Ещё одно необычное свойство Haskell состоит в том, что в этом языке придаётся особое значение рассуждениям о типах данных. Как следствие, вы помещаете больше внимания и меньше кода в ваши программы.
Вне зависимости от того, в каком направлении вы намерены двигаться, путешествуя в мире программирования, небольшой заход в страну Haskell себя оправдает. А если вы решите там остаться, то наверняка найдёте чем заняться и чему поучиться!
Эта книга поможет многим читателям найти свой путь к Haskell.
Отображения, монады, моноиды и другое! Всё сказано в названии: «Изучай Хаскель во имя добра!» – весёлый иллюстрированный самоучитель по этому сложному функциональному языку.
С помощью оригинальных рисунков автора, отсылке к поп-культуре, и, самое главное, благодаря полезным примерам кода, эта книга обучает основам функционального программирования так, как вы никогда не смогли бы себе представить.
Вы начнете изучение с простого материала: основы синтаксиса, рекурсия, типы и классы типов. Затем, когда вы преуспеете в основах, начнется настоящий мастер-класс от профессионала: вы изучите, как использовать аппликативные функторы, монады, застежки, и другие легендарные конструкции Хаскеля, о которых вы читали только в сказках.
Продираясь сквозь образные (и порой безумные) примеры автора, вы научитесь:
• Смеяться в лицо побочным эффектам, поскольку вы овладеете техниками чистого функционального программирования.
• Использовать волшебство «ленивости» Хаскеля для игры с бесконечными наборами данных.
• Организовывать свои программы, создавая собственные типы, классы типов и модули.
• Использовать элегантную систему ввода-вывода Хаскеля, чтобы делиться гениальностью ваших программ с окружающим миром.
Нет лучшего способа изучить этот мощный язык, чем чтение «Изучай Хаскель во имя добра!», кроме, разве что, поедания мозга его создателей. Миран Липовача (Miran Lipovača) изучает информатику в Любляне (Словения). Помимо его любви к Хаскелю, ему нравится заниматься боксом, играть на бас-гитаре и, конечно же, рисовать. У него есть увлечение танцующими скелетами и числом 71, а когда он проходит через автоматические двери, он притворяется, что на самом деле открывает их силой своей мысли.

Изучай Haskell во имя добра! - читать онлайн бесплатно ознакомительный отрывок

Изучай Haskell во имя добра! - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Миран Липовача
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Вы знаете, что для монады IOиспользование функции returnсоздаёт действие ввода-вывода, которое не имеет побочных эффектов, но просто возвращает значение в качестве своего результата. По этому вполне логично, что этот закон выполняется также и для монады IO.

Правая единица

Второй закон утверждает, что если у нас есть монадическое значение и мы используем операцию >>=для передачи его функции return, результатом будет наше изначальное монадическое значение. Формально m >>= returnявляется не чем иным, как просто m.

Этот закон может быть чуть менее очевиден, чем первый. Давайте посмотрим, почему он должен выполняться. Когда мы передаём монадические значения функции, используя операцию >>=, эти функции принимают обычные значения и возвращают монадические. Функция returnтоже является такой, если вы рассмотрите её тип.

Функция returnпомещает значение в минимальный контекст, который по-прежнему возвращает это значение в качестве своего результата. Это значит, что, например, для типа Maybeона не вносит никакого неуспеха в вычислениях; для списков – не вносит какую-либо дополнительную недетерминированность.

Вот пробный запуск для нескольких монад:

ghci> Just "двигайся дальше" >>= (\x –> return x)

Just "двигайся дальше"

ghci> [1,2,3,4] >>= (\x –> return x)

[1,2,3,4]

ghci> putStrLn "Вах!" >>= (\x –> return x)

Вах!

В этом примере со списком реализация операции >>=выглядит следующим образом:

xs >>= f = concat (map f xs)

Поэтому когда мы передаём список [1,2,3,4]функции return, сначала она отображает [1,2,3,4], что в результате даёт список списков [[1],[2],[3],[4]]. Затем это конкатенируется, и мы получаем наш изначальный список.

Левое тождество и правое тождество являются, по сути, законами, которые описывают, как должна вести себя функция return. Это важная функция для превращения обычных значений в монадические, и было бы нехорошо, если бы монадическое значение, которое она произвела, имело больше, чем необходимый минимальный контекст.

Ассоциативность

Последний монадический закон говорит, что когда у нас есть цепочка применений монадических функций с помощью операции >>=, не должно иметь значения то, как они вложены. В формальной записи выполнение (m >>= f) >>= g– точно то же, что и выполнение m >>= (\x –> f x >>= g).

Гм-м, что теперь тут происходит? У нас есть одно монадическое значение, m, и две монадические функции, fи g. Когда мы выполняем выражение (m >>= f) >>= g, то передаём значение mв функцию f, что даёт в результате монадическое значение. Затем мы передаём это новое монадическое значение функции g. В выражении m >>= (\x –> f x >>= g)мы берём монадическое значение и передаём его функции, которая передаёт результат применения f xфункции g. Нелегко увидеть, почему обе эти записи равны, так что давайте взглянем на пример, который делает это равенство немного более очевидным.

Помните нашего канатоходца Пьера, который пытался удержать равновесие, в то время как птицы приземлялись на его балансировочный шест? Чтобы симулировать приземление птиц на балансировочный шест, мы создали цепочку из нескольких функций, которые могли вызывать неуспешное окончание вычислений:

ghci> return (0, 0) >>= landRight 2 >>= landLeft 2 >>= landRight 2

Just (2,4)

Мы начали со значения Just (0, 0), а затем связали это значение со следующей монадической функцией landRight 2. Результатом было другое монадическое значение, связанное со следующей монадической функцией, и т. д. Если бы надлежало явно заключить это в скобки, мы написали бы следующее:

ghci> ((return (0, 0) >>= landRight 2) >>= landLeft 2) >>= landRight 2

Just (2,4)

Но мы также можем записать инструкцию вот так:

return (0, 0) >>= (\x –>

landRight 2 x >>= (\y –>

landLeft 2 y >>= (\z –>

landRight 2 z)))

Вызов return (0, 0)– то же самое, что Just (0, 0), и когда мы передаём это анонимной функции, образец xпринимает значение (0, 0). Функция landRightпринимает количество птиц и шест (кортеж, содержащий числа) – и это то, что ей передаётся. В результате мы имеем значение Just (0, 2), и, когда передаём его следующей анонимной функции, образец yстановится равен (0, 2). Это продолжается до тех пор, пока последнее приземление птицы не вернёт в качестве результата значение Just (2, 4), что в действительности является результатом всего выражения.

Поэтому неважно, как у вас вложена передача значений монадическим функциям. Важен их смысл. Давайте рассмотрим ещё один способ реализации этого закона. Предположим, мы производим композицию двух функций, fи g:

(.) :: (b –> c) –> (a –> b) –> (a –> c)

f . g = (\x –> f (g x))

Если функция gимеет тип a –> bи функция fимеет тип b –> c, мы компонуем их в новую функцию типа a –> c, чтобы её параметр передавался между этими функциями. А что если эти две функции – монадические? Что если возвращаемые ими значения были бы монадическими? Если бы у нас была функция типа a –> m b, мы не могли бы просто передать её результат функции типа b –> m c, потому что эта функция принимает обычное значение b, не монадическое. Чтобы всё-таки достичь нашей цели, можно воспользоваться операцией <=<:

(<=<) :: (Monad m) => (b –> m c) –> (a –> m b) –> (a –> m c)

f <=< g = (\x –> g x >>= f)

Поэтому теперь мы можем производить композицию двух монадических функций:

ghci> let f x = [x,-x]

ghci> let g x = [x*3,x*2]

ghci> let h = f <=< g

ghci> h 3

[9,-9,6,-6]

Ладно, всё это здорово. Но какое это имеет отношение к закону ассоциативности? Просто, когда мы рассматриваем этот закон как закон композиций, он утверждает, что f <=< (g <=< h)должно быть равнозначно (f <=< g) <=< h. Это всего лишь ещё один способ доказать, что для монад вложенность операций не должна иметь значения.

Если мы преобразуем первые два закона так, чтобы они использовали операцию <=<, то закон левого тождества утверждает, что для каждой монадической функции fвыражение f <=< returnозначает то же самое, что просто вызвать f. Закон правого тождества говорит, что выражение return <=< fтакже ничем не отличается от простого вызова f. Это подобно тому, как если бы fявлялась обычной функцией, и тогда (f . g) . hбыло бы аналогично f . (g . h), выражение f . id– всегда аналогично f, и выражение id . fтоже ничем не отличалось бы от вызова f.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Миран Липовача читать все книги автора по порядку

Миран Липовача - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Изучай Haskell во имя добра! отзывы


Отзывы читателей о книге Изучай Haskell во имя добра!, автор: Миран Липовача. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x