Д. Стефенс - C++. Сборник рецептов
- Название:C++. Сборник рецептов
- Автор:
- Жанр:
- Издательство:КУДИЦ-ПРЕСС
- Год:2007
- Город:Москва
- ISBN:5-91136-030-6
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Д. Стефенс - C++. Сборник рецептов краткое содержание
Данная книга написана экспертами по C++ и содержит готовые рецепты решения каждодневных задач для программистов на С++. Один из авторов является создателем библиотеки Boost Iostreams и нескольких других библиотек C++ с открытым исходным кодом. В книге затрагивается множество тем, вот лишь некоторые из них: работа с датой и временем; потоковый ввод/вывод; обработка исключений; работа с классами и объектами; сборка приложений; синтаксический анализ XML-документов; программирование математических задач. Читатель сможет использовать готовые решения, а сэкономленное время и усилия направить на решение конкретных задач.
C++. Сборник рецептов - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
if (typeid(b) == typeid(d)) {
Это выражение возвращает истину, если возвращаемые объекты type_info
равны. Это работает благодаря тому, что typeid
возвращает ссылку на статический объект, так что при его вызове для двух объектов одного и того же типа будут получены две ссылки на один и тот же объект и сравнение вернет истину.
typeid
также можно использовать непосредственно с типом, как здесь.
if (typeid(d) == typeid(Derived)) {
Это позволяет явно проверять определенный тип.
Вероятно, наиболее часто typeid
используется для отладки. Для записи имени типа используйте type_info::name
, как здесь.
std::cout << typeid(d).name() << std::endl;
При передаче объектов различных типов это может быть очень полезно. Строка, завершающаяся нулем, возвращаемая name
, зависит от реализации, но вы можете ожидать (но не полагаться на это), что она будет равна имени типа. Это также работает и для встроенных типов.
Не злоупотребляйте этой методикой, основывая на информации о типе логику программы, если это не абсолютно необходимо. В общем случае наличие логики, которая выполняет что-то похожее на следующее, расценивается как плохой дизайн.
Если obj
имеет тип X
, сделать что-то одно, а если obj
имеет тип Y
, сделать что-то другое.
Это плохой дизайн, потому что клиентский код теперь содержит избыточные зависимости от типов используемых объектов. Это также приводит к большой каше из if/then кода, который то и дело повторяется, если для объектов типов X
или Y
требуется различное поведение. Объектно-ориентированное программирование и полиморфизм существуют в большой степени для того, чтобы избавить нас от написания подобного рода логики. Если для какого-либо семейства связанных классов требуется зависящее от типа поведение, то они все должны наследоваться от какого-то базового класса и использовать виртуальные функции, динамически вызывая различное поведение в зависимости от типа.
RTTI приводит к накладным расходам, так что компиляторы обычно по умолчанию его отключают. Скорее всего ваш компилятор имеет параметр командной строки для включения RTTI. Также это не единственный способ, которым можно получить информацию о типе. Другая методика приведена в рецепте 8.7.
Рецепт 8.7.
8.7. Определение, является ли класс объекта подклассом другого класса
Имеется два объекта и требуется узнать, имеют ли их классы отношения на уровне базовый класс/производный класс, или они не связаны друг с другом.
Используйте оператор dynamic_cast
, который пытается выполнить преобразование одного типа в другой. Результат скажет, имеется ли связь между классами. Пример 8.7 представляет код, который это делает.
Пример 8.7. Определение отношений классов
#include
#include
using namespace std;
class Base {
public:
virtual ~Base() {} // Делаем класс полиморфным
};
class Derived : public Base {
public:
virtual ~Derived() {}
};
int main() {
Derived d;
// Запрашиваем тип отношений
if (dynamic_cast(&d)) {
cout << "Derived является классом, производным от Base" << endl;
} else {
cout << "Derived HE является классом, производным от Base" << endl;
}
}
Для запроса отношений между двумя типами используйте оператор dynamic_cast
. dynamic_cast
принимает указатель или ссылку на некий тип и пытается преобразовать его к указателю или ссылке на производный класс, т.е. выполняя преобразование типа вниз по иерархии классов. Если есть Base*
, который указывает на объект Derived
, то dynamic_cast(&d)
возвращает указатель типа Derived
только в том случае, если d
— это объект типа, производного от Base
. Если преобразование невозможно (из-за того, что Derived
не является подклассом — явным или косвенным — класса Base
), то преобразование завершается неудачей и, если в dynamic_cast
был передан указатель на производный класс, возвращается NULL
. Если в него была передана ссылка, то выбрасывается стандартное исключение bad_cast
. Также базовый класс должен наследоваться как public
и это наследование не должно быть двусмысленным. Результат говорит о том, является ли один класс наследником другого класса. Вот что я сделал в примере 8.7.
if (dynamic_cast(&d)) {
Здесь возвращается нe- NULL
-указатель, так как d
— это объект класса, производного от Base
. Эту возможность можно использовать для определения отношения любых двух классов. Единственным требованием является то, что аргумент объекта должен быть полиморфным типом, что означает, что он должен иметь по крайней мере одну виртуальную функцию. Если это не будет соблюдено, то такой код не скомпилируется. Однако обычно это не вызывает особых проблем, так как иерархия классов без виртуальных функций встречается крайне редко.
Если этот синтаксис кажется вам слишком запутанным, используйте макрос, скрывающий некоторые подробности.
#define IS_DERIVED_FROM(BaseClass, x) (dynamic_cast(&(x)))
//...
if (IS_DERIVED_FROM(Base, l)){//...
Но помните, что такая информация о типах не бесплатна, так как dynamic_cast
должен во время выполнения пройти по иерархии классов и определить, является ли один класс наследником другого, так что не злоупотребляйте этим способом. Кроме того, компиляторы не включают эту информацию по умолчанию, так как RTTI приводит к накладным расходам, и не все используют эту функцию, так что вам может потребоваться включить ее с помощью опции компилятора.
Рецепт 8.6.
8.8. Присвоение каждому экземпляру класса уникального идентификатора
Требуется, чтобы каждый объект класса имел уникальный идентификатор.
Для отслеживания следующего доступного для использования идентификатора используйте статическую переменную-член. В конструкторе присвойте текущему объекту очередное доступное значение, а затем инкрементируйте статическую переменную. Чтобы понять, как это работает, посмотрите на пример 8.8.
Пример 8.8. Присвоение уникальных идентификаторов
#include
class UniqueID {
protected:
static int nextID;
public:
int id;
UniqueID();
UniqueID(const UniqueID& orig);
UniqueID& operator=(const UniqueID& orig);
};
int UniqueID::nextID = 0;
UniqueID::UniqueID() {
id = ++nextID;
}
UniqueID::UniqueID(const UniqueID& orig) {
id = orig.id;
}
UniqueID& UniqueID::operator=(const UniqueID& orig) {
id = orig.id;
return(*this);
}
Интервал:
Закладка: