Джулиан Бакнелл - Фундаментальные алгоритмы и структуры данных в Delphi
- Название:Фундаментальные алгоритмы и структуры данных в Delphi
- Автор:
- Жанр:
- Издательство:ДиаСофтЮП
- Год:2003
- ISBN:ISBN 5-93772-087-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Джулиан Бакнелл - Фундаментальные алгоритмы и структуры данных в Delphi краткое содержание
Книга "Фундаментальные алгоритмы и структуры данных в Delphi" представляет собой уникальное учебное и справочное пособие по наиболее распространенным алгоритмам манипулирования данными, которые зарекомендовали себя как надежные и проверенные многими поколениями программистов. По данным журнала "Delphi Informant" за 2002 год, эта книга была признана сообществом разработчиков прикладных приложений на Delphi как «самая лучшая книга по практическому применению всех версий Delphi».
В книге подробно рассматриваются базовые понятия алгоритмов и основополагающие структуры данных, алгоритмы сортировки, поиска, хеширования, синтаксического разбора, сжатия данных, а также многие другие темы, тесно связанные с прикладным программированием. Изобилие тщательно проверенных примеров кода существенно ускоряет не только освоение фундаментальных алгоритмов, но также и способствует более квалифицированному подходу к повседневному программированию.
Несмотря на то что книга рассчитана в первую очередь на профессиональных разработчиков приложений на Delphi, она окажет несомненную пользу и начинающим программистам, демонстрируя им приемы и трюки, которые столь популярны у истинных «профи». Все коды примеров, упомянутые в книге, доступны для выгрузки на Web-сайте издательства.
Фундаментальные алгоритмы и структуры данных в Delphi - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
function TtdInputBitStream.ReadBit : boolean;
begin
{если в текущей аккумуляторной переменной никаких битов не осталось, необходимо выполнить считывание следующего байта аккумуляторной переменной и сбросить значение маски}
if (FMask = 0) then begin
if (FBufPos >= FBufEnd) then
ibsReadBuffer;
FAccum := byte(FBuffer [FBufPos] );
inc(FBufPos);
FMask := 1;
end;
{извлечь следующий бит}
Result := (FAccum and FMask) <> 0;
FMask := FMask shl 1;
end;
После того, как мы выяснили, как выполняется считывание отдельного бита, покажем, что запись отдельного бита - тот же самый процесс, только выполняемый в обратном порядке. Код метода WriteBit, в котором единственный бит передается как булево значение - true, если бит установлен, и false, если он очищен - приведен в листинге 11.4.
Листинг 11.4. Запись отдельного бита в объект TtdOutputBitStream
procedure TtdOutputBitStream.WriteBit(aBit : boolean);
begin
{установить следующий свободный бит}
if aBit then
FAccum := (FAccum or FMask);
FMask := FMask shl 1;
{/при отсутствии свободных битов в текущей аккумуляторной переменной ее значение нужно записать в буфер и сбросить значение аккумуляторной переменной и маски}
if (FMask = 0) then begin
byte(FBuffer[FBufPos]) := FAccum;
inc(FBufPos);
if (FBufPos >= StreamBufferSize) then
obsWriteBuffer;
FAccum := 0;
FMask := 1;
end;
end;
Поскольку обработка всегда начинается при значении аккумуляторного байта (FAccum) равном нулю, нужно всего лишь записать эти биты установки, а не очистить их. Мы снова используем маску (EMask), содержащую единственный бит установки, но на этот раз чтобы установить соответствующий бит, после чего выполняем операцию OR (ИЛИ) между маской и значением аккумуляторной переменной. Затем мы сдвигаем маску влево на один бит, подготавливая к обработке следующий бит. Однако если теперь значение маски равно нулю, потребуется сохранить аккумуляторный байт в буфере (записывая буфер в базовый поток, если буфер полон), а затем сбросить значение аккумуляторного байта и маски.
Полный код обоих классов TtdInputBitStrem и TtdOutputBitStrem можно найти на Web-сайте издательства, в разделе материалов. После выгрузки материалов отыщите среди них файл TDStrms.pas. Полный код содержит также подпрограммы одновременного считывания и записи нескольких битов - либо восьми битов отдельного байта (ReadByte и WriteByte), либо переменного числа байтов из массива байтов (ReadBits и WriteBits). Для доступа к отдельным битам все эти дополнительные подпрограммы используют одну и ту же методологию манипуляции битами. Просто соответствующие операции выполняются в цикле.
Сжатие с минимальной избыточностью
Теперь, когда в нашем распоряжении имеется класс потока битов, им можно воспользоваться при рассмотрении алгоритмов сжатия и восстановления данных. Мы начнем с исследования алгоритмов кодирования с минимальной избыточностью, а затем рассмотрим более сложное сжатие с применением словаря.
Мы приведем подробное описание трех алгоритмов кодирования с минимальной избыточностью: кодирование Шеннона-Фано (Shannon-Fano), кодирование Хаффмана (Huffman) и сжатие с применением скошенного дерева (splay tree compression), однако рассмотрим реализации только последних двух алгоритмов (алгоритм кодирования Хаффмана ни в чем не уступает, а кое в чем даже превосходит алгоритм кодирования Шеннона-Фано). При использовании каждого из этих алгоритмов входные данные анализируются как поток байтов, и различным значениям байтов тем или иным способом присваиваются различные последовательности битов.
Кодирование Шеннона-Фано
Первый алгоритм сжатия, который мы рассмотрим - кодирование Шеннона-Фано, названное так по имени двух исследователей, которые одновременно и независимо друг от друга разработали этот алгоритм: Клода Шеннона (Claude Shannon) и Р. М. Фано (R. М. Fano). Алгоритм анализирует входные данные и на их основе строит бинарное дерево минимального кодирования. Используя это дерево, затем можно выполнить повторное считывание входных данных и закодировать их.
Чтобы проиллюстрировать работу алгоритма, выполним сжатие предложения "How much wood could a woodchuck chuck?" ("Сколько дров мог бы заготовить дровосек?") Прежде всего, предложение необходимо проанализировать. Просмотрим данные и вычислим, сколько раз в предложении встречается каждый символ. Занесем результаты в таблицу (см. таблицу 11.1).
Таблица 11.1. Частота появления символов в примере предложения
Символ - Количество появлений
Пробел - 6
c - 6
o - 6
u - 4
d - 3
h - 3
w - 3
k - 2
H - 1
a - 1
l - 1
m - 1
? - 1
Теперь разделим таблицу на две части, чтобы общее число появлений символов в верхней половине таблицы приблизительно равнялось общему числу появлений в нижней половине. Предложение содержит 38 символов, следовательно, верхняя половина таблицы должна отражать приблизительно 19 появлений символов. Это просто: достаточно поместить разделительную линию между строкой о и строкой и. В результате этого верхняя половина таблицы будет отражать появление 18 символов, а нижняя - 20. Таким образом, мы получаем таблицу 11.2.
Таблица 11.2. Начало построения дерева Шеннона-Фано
Символ - Количество появлений
Пробел - 6
c - 6
o - 6
------------------------------------ разделительная линия 1
u - 4
d - 3
h - 3
w - 3
k - 2
H - 1
a - 1
l - 1
m - 1
? - 1
Теперь проделаем то же с каждой из частей таблицы: вставим линию между строками так, чтобы разделить каждую из частей. Продолжим этот процесс, пока все буквы не окажутся разделенными одна от другой. Результирующее дерево Шеннона-Фано представлено в таблице 11.3.
Таблица 11.3. Завершенное дерево Шеннона-Фано Символ Количество появлений

Я намеренно изобразил разделительные линии различными по длине, чтобы разделительная линия 1 была самой длинной, разделительная линия 2 немного короче и так далее, вплоть до самой короткой разделительной линии 6. Этот подход обусловлен тем, что разделительные линии образуют повернутое на 90° бинарное дерево (чтобы убедиться в этом, поверните таблицу на 90° против часовой стрелки). Разделительная линия 1 является корневым узлом дерева, разделительные линии 2 - двумя его дочерними узлами и т.д. Символы образуют листья дерева. Результирующее дерево в обычной ориентации показано на рис. 11.1

Рисунок 11.1. Дерево Шеннона-Фано
Все это очень хорошо, но как оно помогает решить задачу кодирования каждого символа и выполнения сжатия? Что ж, чтобы добраться до символа пробела, мы начинаем с коневого узла, перемещаемся влево, а затем снова влево. Чтобы добраться до символа с, мы смещаемся влево из корневого узла, затем вправо, а затем влево. Для перемещения к символу о потребуется сместиться влево, а затем два раза вправо. Если принять, что перемещение влево эквивалентно нулевому биту, а вправо - единичному, можно создать таблицу кодирования, приведенную в таблице 11.4.
Читать дальшеИнтервал:
Закладка: