Джулиан Бакнелл - Фундаментальные алгоритмы и структуры данных в Delphi
- Название:Фундаментальные алгоритмы и структуры данных в Delphi
- Автор:
- Жанр:
- Издательство:ДиаСофтЮП
- Год:2003
- ISBN:ISBN 5-93772-087-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Джулиан Бакнелл - Фундаментальные алгоритмы и структуры данных в Delphi краткое содержание
Книга "Фундаментальные алгоритмы и структуры данных в Delphi" представляет собой уникальное учебное и справочное пособие по наиболее распространенным алгоритмам манипулирования данными, которые зарекомендовали себя как надежные и проверенные многими поколениями программистов. По данным журнала "Delphi Informant" за 2002 год, эта книга была признана сообществом разработчиков прикладных приложений на Delphi как «самая лучшая книга по практическому применению всех версий Delphi».
В книге подробно рассматриваются базовые понятия алгоритмов и основополагающие структуры данных, алгоритмы сортировки, поиска, хеширования, синтаксического разбора, сжатия данных, а также многие другие темы, тесно связанные с прикладным программированием. Изобилие тщательно проверенных примеров кода существенно ускоряет не только освоение фундаментальных алгоритмов, но также и способствует более квалифицированному подходу к повседневному программированию.
Несмотря на то что книга рассчитана в первую очередь на профессиональных разработчиков приложений на Delphi, она окажет несомненную пользу и начинающим программистам, демонстрируя им приемы и трюки, которые столь популярны у истинных «профи». Все коды примеров, упомянутые в книге, доступны для выгрузки на Web-сайте издательства.
Фундаментальные алгоритмы и структуры данных в Delphi - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
-------+
a cat is | a cat is a cat
-------+^
и мы вычислили пару значений расстояние/длина <9,9>. Однако можно применить небольшую хитрость. Почему мы должны прекращать сопоставление на 9 символах? В действительности можно сопоставить значительно больше символов, выйдя за пределы правой границы скользящего окна и продолжая сопоставление с текущим символом и с символами, расположенными справа от него. Фактически, можно было бы установить соответствие 14 символов, получив при этом код <9,14>, в котором значение длины превышает значение расстояния. Все это замечательно и достаточно разумно, но что при этом происходит во время декодирования? В момент декодирования кода <9,14> скользящее окно выглядит следующим образом:
--------+
a cat is I
--------+ ^
Мы возвращаемся в скользящем окне на 9 символов назад и начинаем по одному копировать символы, пока не будет достигнут 14-й символ. В результате мы копируем символы, которые нам удалось определить в одной и той же операции.
После копирования девяти символов мы получаем
--------+
a cat is I a cat is
--------+ ^________^
__________от______до
где показаны позиции, от которой и до которой выполняется копирование. Как видите, копирование остальных пяти символов может быть выполнено вообще без возникновения каких-либо проблем. Следовательно, значение длины вполне может превышать значение расстояния (хотя приходится признать, что для копирования данных нельзя было просто воспользоваться процедурой Move).
Во время восстановления мы передадим класс скользящего окна выходному потоку, в который должны записываться данные. В результате, когда объект определяет, что активные данные в буфере требуется передвинуть обратно к началу, вначале он копирует в поток данные, которые должны замещаться в буфере. Для выполнения восстановления требуются два основных метода: добавление одиночного символа и преобразование пары расстояние/длина. Обратите внимание, что эти действия выполняются классом скользящего окна, поскольку обновление скользящего окна и перемещение вперед по данным должны выполняться в обоих случаях. Кроме того, класс - лучший агент выполнения преобразования значений расстояния и длины. Код реализации интерфейса класса, служебных процедур и вывода соответствующего кода приведен в листинге 11.23.
Листинг 11.23. Код, связанный с выводом, класса скользящего окна
type
TtdLZSlidingWindow = class private
FBuffer : PAnsiChar;{циклический буфер}
FBufferEnd : PAnsiChar;{конечная точка буфера}
FCompressing : boolean;{true=сжатию данных}
FCurrent : PAnsiChar;{текущий символ}
FLookAheadEnd : PAnsiChar;{конец упреждающего просмотра}
FMidPoint : PAnsiChar;{средняя точка буфера}
FName : TtdNameString;{имя скользящего окна}
FStart : PAnsiChar;{начало скользящего окна}
FStartOffset : longint;{смещение потока для FStart}
FStream : TStream;{базовый поток}
protected
procedure swAdvanceAfterAdd(aCount : integer);
procedure swReadFromStream;
procedure swSetCapacity(aValue : longint);
procedure swWriteToStream(aFinalBlock : boolean);
public
constructor Create(aStream : TStream;
aCompressing : boolean);
destructor Destroy; override;
{методы, используемые как во время сжатия, так и во время восстановления}
procedure Clear;
{методы, используемые во время сжатия}
procedure Advance(aCount : integer);
function Compare(aOffset : longint;
var aDistance : integer): integer;
procedure GetNextSignature(var aMS : TtdLZSignature;
varaOffset : longint);
{методы, используемые во время восстановления}
procedure AddChar(aCh : AnsiChar);
procedureAddCode(aDistance : integer;
aLength : integer);
property Name : TtdNameString read FName write FName;
end;
constructor TtdLZSlidingWindow.Create(aStream : TStream;
aCompressing : boolean);
begin
inherited Create;
{сохранить параметры}
FCompressing := aCompressing;
FStream := aStream;
{установить размер скользящего окна: согласно принятого определения размер скользящего окна равен 8192 байтам плюс 10 байтов для упреждающего просмотра}
swSetCapacity(tdcLZSlidingWindowSize + tdcLZLookAheadSize);
{сбросить буфер и, если выполняется сжатие, считать определенные данные из сжимаемого потока}
Clear;
if aCompressing then
swReadFromStream;
end;
destructor TtdLZSlidingWindow.Destroy;
begin
if Assigned(FBuffer) then begin
{завершить запись в выходной поток, если выполняется сжатие}
if not FCompressing then
swWriteToStream(true);
{освободить буфер}
FreeMem(FBuffer, FBufferEnd - FBuffer);
end;
inherited Destroy;
end;
procedure TtdLZSlidingWindow.AddChar(aCh : AnsiChar);
begin
{добавить символ в буфер}
FCurrent^ :=aCh;
{сместить скользящее окно на один символ}
swAdvanceAfterAdd(1);
end;
procedure TtdLZSlidingWindow.AddCode(aDistance : integer;
aLength : integer);
var
FromChar : PAnsiChar;
ToChar : PAnsiChar;
i : integer;
begin
{установить указатели для выполнения копирования данных; обратите внимание, что в данном случае нельзя использовать процедуру Move, поскольку часть копируемых данных может быть определена реальным копированием данных}
FromChar := FCurrent - aDistance;
ToChar := FCurrent;
for i := 1 to aLength do
begin
ToChar^ := FromChar^;
inc(FromChar);
inc(ToChar);
end;
{сместить начало скользящего окна}
swAdvanceAfterAdd(aLength);
end;
procedure TtdLZSlidingWindow.swAdvanceAfterAdd(aCount : integer);
begin
{при необходимости сместить начало скользящего окна}
if ( (FCurrent - FStart) >= tdcLZSlidingWindowSize) then begin
inc(FStart, aCount);
inc(FStartOffset, aCount);
end;
{сместить текущий указатель}
inc(FCurrent, aCount);
{проверить смещение в зону переполнения}
if (FStart >= FMidPoint) then begin
{записать дополнительные данные в поток (от позиции FBuffer до позиции FStart)}
swWriteToStream(false);
{переместить текущие данные обратно в начало буфера}
Move(FStart^, FBuffer^, FCurrent - FStart );
{сбросить различные указатели}
dec(FCurrent, FStart - FBuffer);
FStart := FBuffer;
end;
end;
procedure TtdLZSlidingWindow.swSetCapacity(aValue : longint);
var
NewQueue : PAnsiChar;
begin
{округлить запрошенный объем до ближайшего значения, кратного 64 байтам}
aValue := (aValue + 63) and $7FFFFFC0;
{распределить новый буфер}
GetMem(NewQueue, aValue * 2);
{уничтожить старый буфер}
if ( FBuffer <> nil ) then
FreeMem(FBuffer, FBufferEnd - FBuffer);
{установить начальный/конечный и другие указатели}
FBuffer := NewQueue;
FStart := NewQueue;
FCurrent := NewQueue;
FLookAheadEnd := NewQueue;
FBufferEnd := NewQueue + (aValue * 2);
FMidPoint := NewQueue + aValue;
end;
procedure TtdLZSlidingWindow.swWriteToStream(aFinalBlock : boolean);
var
BytesToWrite : longint;
begin
{записать данные перед текущим скользящим окном}
if aFinalBlock then
BytesToWrite := FCurrent - Fbuffer else
BytesToWrite := FStart - FBuffer;
FStream.WriteBuffer(FBuffer^, BytesToWrite);
end;
Метод AddChar добавляет одиночный литеральный символ в скользящее окно и сдвигает это окно вперед на один байт. Внутренний метод swAdvanceAfterAdd выполняет реальный сдвиг и после сдвига окна проверяет, может ли еще один блок быть записан в выходной поток. Метод AddCode добавляет пару расстояние/длина в скользящее окно, по одному копируя символы из уже декодированной части скользящего окна в текущую позицию. Затем скользящее окно сдвигается вперед.
Теперь достаточно легко создать код восстановления. (Создавать код восстановления раньше кода сжатия кажется несколько неестественным, но в действительности формат сжатых данных настолько определен, что это можно сделать. Кроме того, это проще!) Мы реализуем основной цикл в виде машины состояний с тремя состояниями: считывание и обработка байта флага, считывание и обработка символа и, наконец, считывание и обработка кода расстояния/длины. Код показан в листинге 11.24. Обратите внимание, что определение момента завершения восстановления осуществляется по количеству байтов в несжатом потоке, записанному программой сжатия в начало сжатого потока.
Читать дальшеИнтервал:
Закладка: