Джулиан Бакнелл - Фундаментальные алгоритмы и структуры данных в Delphi
- Название:Фундаментальные алгоритмы и структуры данных в Delphi
- Автор:
- Жанр:
- Издательство:ДиаСофтЮП
- Год:2003
- ISBN:ISBN 5-93772-087-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Джулиан Бакнелл - Фундаментальные алгоритмы и структуры данных в Delphi краткое содержание
Книга "Фундаментальные алгоритмы и структуры данных в Delphi" представляет собой уникальное учебное и справочное пособие по наиболее распространенным алгоритмам манипулирования данными, которые зарекомендовали себя как надежные и проверенные многими поколениями программистов. По данным журнала "Delphi Informant" за 2002 год, эта книга была признана сообществом разработчиков прикладных приложений на Delphi как «самая лучшая книга по практическому применению всех версий Delphi».
В книге подробно рассматриваются базовые понятия алгоритмов и основополагающие структуры данных, алгоритмы сортировки, поиска, хеширования, синтаксического разбора, сжатия данных, а также многие другие темы, тесно связанные с прикладным программированием. Изобилие тщательно проверенных примеров кода существенно ускоряет не только освоение фундаментальных алгоритмов, но также и способствует более квалифицированному подходу к повседневному программированию.
Несмотря на то что книга рассчитана в первую очередь на профессиональных разработчиков приложений на Delphi, она окажет несомненную пользу и начинающим программистам, демонстрируя им приемы и трюки, которые столь популярны у истинных «профи». Все коды примеров, упомянутые в книге, доступны для выгрузки на Web-сайте издательства.
Фундаментальные алгоритмы и структуры данных в Delphi - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Процедура MSS рекурсивно вызывает сама себя для сортировки первой и второй половин переданной ей части массива. Затем она копирует первую половину во вспомогательный массив. Начиная с этого момента, код представляет собой стандартную реализацию сортировки слиянием, копируя две половины списка в исходный список. Если после выполнения цикла сравнения и копирования во вспомогательном массиве остались элементы, процедура MSS их просто копирует. Если же элементы остались во второй половине списка, их можно не копировать, как и в стандартной реализации метода слияния: они уже находятся на своих местах.
Вывод функции быстродействия сортировки слиянием достаточно сложен. Для простоты ее определения лучше принять, что в исходном списке находится 2(^х^) элементов. Предположим, что элементов 32. На первом уровне рекурсии процедура MSS будет вызываться один раз и на этапе слияния будет не более 32 сравнений. На втором уровне рекурсии процедура MSS будет вызываться два раза, причем количество сравнений при каждом вызове не будет превышать 16. Далее рассматриваем третий, четвертый и, наконец, пятый уровень рекурсии (когда будет выполняться сортировка всего двух элементов), на котором будет иметь место 16 вызовов процедуры по два сравнения в каждом. Таким образом, общее количество сравнений будет равно 5 * 32. Но причиной, по которой было получено пять уровней рекурсии, является то, что мы постоянно на каждом уровне постепенно делили список на две равные половины, а 2(^5^) = 32, что, естественно означает, что log(_2_)32 = 5. Следовательно, не утруждая себя переходом от рассмотренного нами частного случая к общему, можно сказать, что сортировка слиянием принадлежит к классу O(n log(n)) алгоритмов.
Что касается устойчивости, то поскольку элементы перемещаются только при выполнении процедуры слияния, устойчивость всей сортировки слиянием будет зависеть от устойчивости самого слияния двух половин списка. Обратите внимание, что если в обеих половинах имеются элементы с одинаковым значением, то оператор сравнения гарантирует, что первым в результирующий список попадет элемент из первой половины списка. Это означает, что операция слияния сохраняет относительный порядок элементов, и, следовательно, сортировка слиянием будет устойчивой.
Если отслеживать вызовы процедуры MSS в отладчике, то можно обратить внимание, что для небольших интервалов она вызывается очень часто. Например, если в списке содержится 32 элемента, то для списка из 32 элементов процедура MSS будет вызвана один раз, для списка из 16 элементов - дважды, четыре раза для 8 элементов, восемь раз для 4 элементов и шестнадцать раз для 2 элементов (список минимальной длины), т.е. всего 31 раз. Это очень много, особенно если учитывать, что большая часть вызовов (29) приходится для списков длиной восемь и менее элементов. Если бы исходный список содержал 1024 элемента, процедура MSS была бы вызвана 1023 раза, из которых 896 вызовов приходилось бы на долю списков длиной восемь и менее элементов. Просто ужасно! Фактически, для сортировки коротких списков было бы эффективнее использовать нерекурсивный алгоритм. Это позволило бы повысить скорость всей сортировки. Кроме того, применение более простой процедуры дало бы возможность для коротких диапазонов исключить копирование элементов между основным и вспомогательным списком. И одним из лучших методов для ускорения сортировки слиянием является сортировка методом вставок.
Листинг 5.13. Оптимизированная сортировка слиянием
const
MSCutOff = 16;
procedure MSInsertionSort(aList : TList;
aFirst : integer; aLast : integer;
aCompare : TtdCompareFunc);
var
i, j : integer;
IndexOfMin : integer;
Temp : pointer;
begin
{найти наименьший элемент в списке}
IndexOfMin := aFirst;
for i := succ(aFirst) to aLast do
if (aCompare(aList.List^[i], aList.List^[IndexOfMin]) < 0) then
IndexOfMin := i;
if (aFirst <> indexOfMin) then begin
Temp := aList.List^[aFirst];
aList.List^[aFirst] := aList.List^[IndexOfMin];
aList.List^[IndexOfMin] := Temp;
end;
{выполнить сортировку методом вставок}
for i := aFirst+2 to aLast do
begin
Temp := aList.List^[i];
j := i;
while (aCompare(Temp, aList.List^[j-1]) < 0) do
begin
aList.List^[j] := aList.List^[j-1];
dec(j);
end;
aList.List^[j] := Temp;
end;
end;
procedure MS(aList : TList; aFirst : integer; aLast : integer;
aCompare : TtdCompareFunc;
aTempList : PPointerList);
var
Mid : integer;
is j : integer;
ToInx : integer;
FirstCount : integer;
begin
{вычислить среднюю точку}
Mid := (aFirst + aLast) div 2;
{выполнить сортировку первой половины списка с помощью сортировки слиянием или если количество элементов достаточно мало, при помощи сортировки методом вставок}
if (aFirst < Mid) then
if (Mid-aFirst) <= MSCutOff then
MSInsertionSort(aList, aFirst, Mid, aCompare) else
MS (aList, aFirst, Mid, aCompare, aTempList);
{аналогично выполнить сортировку второй половины}
if (suce(Mid) < aLast) then
if (aLast-succ(Mid) ) <= MSCutOf f then
MSInsertionSort(aList, succ(Mid), aLast, aCompare)
else
MS (aList, suce(Mid), aLast, aCompare, aTempList);
{скопировать первую половину списка во вспомогательный список}
FirstCount := suce (Mid - aFirst);
Move(aList.List^[aFirst], aTempList^[0], FirstCount*sizeof(pointer));
{установить значения индексов: i - индекс для вспомогательного списка (т.е. первой половины списка), j - индекс для второй половины списка, ToInx -индекс в результирующем списке, куда будут копироваться отсортированные элементы}
i := 0;
j := suce (Mid);
ToInx := aFirst;
{выполнить слияние двух списков}
{повторять до тех пор, пока один из списков не опустеет}
while (i < FirstCount) and (j <= aLast) do
begin
{определить элемент с наименьшим значением из следующих элементов в обоих списках и скопировать его; увеличить значение соответствующего индекса}
if ( aCompare( aTempList^[i], aList.List^[j] ) <= 0 ) then begin
aList.List^[ToInx] := aTempList^[i];
inc(i);
end
else begin
aList.List^[ToInx] := aList.List^[ j ];
inc(j);
end;
{в объединенном списке есть еще один элемент}
inc(ToInx);
end;
{если в первом списке остались элементы, скопировать их}
if (i < FirstCount) then
Move(aTempList^[i], aList.List^[ToInx], (FirstCount - i) * sizeof(pointer));
{если во втором списке остались элементы, то они уже находятся в нужных позициях, значит, сортировка завершена; если второй список пуст, сортировка также завершена}
end;
procedure TDMergeSort(aList : TList;
aFirst : integer;
aLast : integer;
aCompare : TtdCompareFunc);
var
TempList : PPointerList;
ItemCount: integer;
begin
TDValidateListRange(aList, aFirst, aLast, 'TDMergeSort');
{если есть хотя бы два элемента для сортировки}
if (aFirst < aLast) then begin
{создать временный список указателей}
ItemCount := suce (aLast - aFirst);
GetMem(TempList, (succ(ItemCount) div 2) * sizeof(pointer));
try
MS(aList, aFirst, aLast, aCompare, TempList);
finally
FreeMem(TempList, (succ(ItemCount) div 2) * sizeof(pointer));
end;
end;
end;
Несмотря на то что объем кода достаточно велик, в нем находятся всего три процедуры. Прежде всего, драйвер - TDMergeSort - процедура, которую мы вызываем. Как и в предыдущем случае, она используется для выделения из кучи памяти под вспомогательный список указателей и вызывает рекурсивную процедуру, названную в приведенном коде MS. В общих чертах процедура MS работает примерно так, как и ее предшественница - MSS (рекурсивная процедура для стандартной сортировки слиянием). Разница возникает только тогда, когда дело касается сортировки подсписков. Для небольших диапазонов элементов, длина которых меньше, чем значение MSCutOff, процедура MS вызывает третью процедуру, MSInsertionSort, которая сортирует элементы без рекурсивного вызова. Для длинных диапазонов элементов, естественно, происходит рекурсивный вызов процедуры MS. MSInsertionSort ничем не отличается от рассмотренной нами ранее процедуры TDInsertionSort, за исключением одного - она не проверяет корректность входных параметров (в проверке нет необходимости, поскольку все параметры были проверены в TDMergeSort).
Читать дальшеИнтервал:
Закладка: