Джулиан Бакнелл - Фундаментальные алгоритмы и структуры данных в Delphi
- Название:Фундаментальные алгоритмы и структуры данных в Delphi
- Автор:
- Жанр:
- Издательство:ДиаСофтЮП
- Год:2003
- ISBN:ISBN 5-93772-087-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Джулиан Бакнелл - Фундаментальные алгоритмы и структуры данных в Delphi краткое содержание
Книга "Фундаментальные алгоритмы и структуры данных в Delphi" представляет собой уникальное учебное и справочное пособие по наиболее распространенным алгоритмам манипулирования данными, которые зарекомендовали себя как надежные и проверенные многими поколениями программистов. По данным журнала "Delphi Informant" за 2002 год, эта книга была признана сообществом разработчиков прикладных приложений на Delphi как «самая лучшая книга по практическому применению всех версий Delphi».
В книге подробно рассматриваются базовые понятия алгоритмов и основополагающие структуры данных, алгоритмы сортировки, поиска, хеширования, синтаксического разбора, сжатия данных, а также многие другие темы, тесно связанные с прикладным программированием. Изобилие тщательно проверенных примеров кода существенно ускоряет не только освоение фундаментальных алгоритмов, но также и способствует более квалифицированному подходу к повседневному программированию.
Несмотря на то что книга рассчитана в первую очередь на профессиональных разработчиков приложений на Delphi, она окажет несомненную пользу и начинающим программистам, демонстрируя им приемы и трюки, которые столь популярны у истинных «профи». Все коды примеров, упомянутые в книге, доступны для выгрузки на Web-сайте издательства.
Фундаментальные алгоритмы и структуры данных в Delphi - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Поскольку в приведенном коде для сортировки коротких диапазонов в списке используется сортировка методом вставок, которая сама по себе является устойчивой, можно сказать, что оптимизированная сортировка слиянием также принадлежит к группе устойчивых алгоритмов.
Несмотря на то что сортировка слиянием требует дополнительной памяти (объем которой пропорционален количеству элементов в исходном списке), она обладает некоторыми интересными свойствами. Первое из них - сортировка слиянием принадлежит к классу O(n log(n)). Второе - она устойчива. Еще два алгоритма со скоростью работы O(n log(n)) и дополнительными требованиями к памяти, которые будут рассмотрены в этой главе, являются неустойчивыми. Третье - для сортировки слиянием не имеет значения ни порядок элементов в исходном списке (будь то список, отсортированный в прямом порядке или обратном), ни повторения значений в списке. Другими словами, она не имеет худшего случая.
В конце этой главы мы рассмотрим случай, в котором сортировка слиянием просто необходима, - сортировка связного списка.
И, наконец, сортировка слиянием используется для сортировки содержимого файлов, размер которых слишком велик, чтобы поместиться в памяти. В этой ситуации выполняется сортировка частей файлов, запись этих частей в отдельные файлы, а затем их слияние в один файл.
Быстрая сортировка
И последний алгоритм, который будет рассмотрен в этой главе - быстрая сортировка (quicksort). (В книге мы опишем еще одну сортировку "в памяти" - пирамидальную сортировку, но она требует дополнительных знаний структуры данных - бинарного дерева. По этой причине рассмотрение пирамидальной сортировки отложено до главы 9.)
Алгоритм быстрой сортировки был разработан К.A.Р. Хоаром (C.A.R. Hoare) в 1960 году. Этот алгоритм, наверное, еще более известен, чем пузырьковая сортировка. В настоящее время он является самым широко используемым в программировании методом сортировки, что вызвано его крайне положительными характеристиками: это алгоритм класса O(n log(n)) для общего случая, он требует лишь незначительного объема дополнительной памяти, работает с различными типами входных списков и достаточно удобен для реализации. Но, к сожалению, быстрая сортировка имеет и несколько нежелательных характеристик: при его реализации допускается очень много ошибок (простые ошибки в реализации могут остаться незамеченными и при выполнении могут потребовать дополнительного времени), быстродействие в худшем случае составляет O(n(^2^)) и к тому же она неустойчива.
Кроме того, быстрая сортировка наиболее изучена. Со времени выхода в свет первой статьи Хоара многие исследователи изучали быструю сортировку и сформировали значительную базу данных по теоретическому определению времени выполнения, подкрепленную эмпирическими данными. Было предложено немало улучшений базового алгоритма, позволяющих увеличить скорость работы. Некоторые из предложенных улучшений будет рассмотрены в этой главе. При таком богатстве литературных источников по алгоритму быстрой сортировки, если следовать всем рекомендациям, у вас не должно возникнуть проблем с реализацией. (В последней оптимизированной реализации алгоритма использовалось более шести различных справочных пособий по алгоритмам. Причем в одной из них была приведена "оптимизированная" быстрая сортировка, которая была написана так плохо, что при одних и тех же входных данных работала даже медленнее, чем стандартный метод TList.Sort.)
Быстрая сортировка встречается везде. Во всех версиях Delphi, за исключением версии 1, метод TList.Sort реализован на основе алгоритма быстрой сортировки. Метод TStringList.Sort во всех версиях Delphi реализован с помощью быстрой сортировки. В С++ функция qsort из стандартной библиотеки времени выполнения также реализована на базе быстрой сортировки.
Основной алгоритм быстрой сортировки, как и сортировку слиянием, можно отнести к классу "разделяй и властвуй". Он разбивает исходный список на два, а затем для выполнения сортировки рекурсивно вызывает сам себя для каждой части списка. Таким образом, особое внимание в быстрой сортировке нужно уделить процессу разделения. В разбитом списке происходит следующее: выбирается элемент, называемый базовым, относительно которого переставляются элементы в списке. Элементы, значения которых меньше, чем значение базового элемента, переносятся левее базового, а элементы, значения которых больше, чем значение базового элемента, переносятся правее базового. После этого можно сказать, что базовый элемент находится на своем месте в отсортированном списке. Затем выполняется рекурсивный вызов функции быстрой сортировки для левой и правой частей списка (относительно базового элемента). Рекурсивные вызовы прекращаются, когда список, переданный функции сортировки, будет содержать всего один элемент, а, следовательно, весь список оказывается отсортированным.
Таким образом, для выполнения быстрой сортировки необходимо знать два алгоритма более низкого уровня: как выбирать базовый элемент и как наиболее эффективно переставить элементы списка таким образом, чтобы получить два набора элементов: со значениями, меньшими, чем значение базового элемента, и со значениями, большими, чем значение базового элемента.
Начнем с описания алгоритма выбора базового элемента. В идеале следовало бы выбирать средний элемент списка. Затем при разбиении количество элементов в наборе значений, меньших значения базового элемента, будет равно количеству элементов в наборе значений, больших значения базового элемента. Другими словами, при разбиении исходный список был бы разделен на две равные половины. Вычисление среднего элемента списка (или его медианы) представляет собой достаточно сложный процесс, к тому же стандартный алгоритм его определения использует метод разбиения быстрой сортировки, который мы сейчас обсуждаем. Поэтому нам придется отказаться от определения среднего элемента списка.
Худшим случаем будет иметь место, если в качестве базового элемента мы выберем элемент с максимальным или минимальным значением. В этом случае после выполнения процесса разбиения один из результирующих списков будет пуст, а во втором будут содержаться все элементы, поскольку все они будут находиться по одну сторону от базового элемента. Конечно, заранее (по крайней мере, без просмотра списка) невозможно узнать, выбран ли элемент с минимальными или максимальным значением, но если при каждом рекурсивном вызове в качестве базового элемента будет выбираться один из граничных элементов, то для n элементов будет выполнено n уровней рекурсии. При большом количестве сортируемых элементов это может вызывать проблемы. (при реализации алгоритма быстрой сортировки особое внимание следует уделить исключению возможности зацикливания рекурсивных вызовов.)
Читать дальшеИнтервал:
Закладка: