Джулиан Бакнелл - Фундаментальные алгоритмы и структуры данных в Delphi
- Название:Фундаментальные алгоритмы и структуры данных в Delphi
- Автор:
- Жанр:
- Издательство:ДиаСофтЮП
- Год:2003
- ISBN:ISBN 5-93772-087-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Джулиан Бакнелл - Фундаментальные алгоритмы и структуры данных в Delphi краткое содержание
Книга "Фундаментальные алгоритмы и структуры данных в Delphi" представляет собой уникальное учебное и справочное пособие по наиболее распространенным алгоритмам манипулирования данными, которые зарекомендовали себя как надежные и проверенные многими поколениями программистов. По данным журнала "Delphi Informant" за 2002 год, эта книга была признана сообществом разработчиков прикладных приложений на Delphi как «самая лучшая книга по практическому применению всех версий Delphi».
В книге подробно рассматриваются базовые понятия алгоритмов и основополагающие структуры данных, алгоритмы сортировки, поиска, хеширования, синтаксического разбора, сжатия данных, а также многие другие темы, тесно связанные с прикладным программированием. Изобилие тщательно проверенных примеров кода существенно ускоряет не только освоение фундаментальных алгоритмов, но также и способствует более квалифицированному подходу к повседневному программированию.
Несмотря на то что книга рассчитана в первую очередь на профессиональных разработчиков приложений на Delphi, она окажет несомненную пользу и начинающим программистам, демонстрируя им приемы и трюки, которые столь популярны у истинных «профи». Все коды примеров, упомянутые в книге, доступны для выгрузки на Web-сайте издательства.
Фундаментальные алгоритмы и структуры данных в Delphi - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Однако приведенное выше доказательство справедливо только в том случае, если нам очень повезет, не правда ли? На самом деле, нет. Если каждый раз в стек помещать больший подсписок, а продолжать работать с меньшим, то глубину вложения подсписков будет определять именно меньший подсписок. Поскольку размер меньшего подсписка будет всегда меньше или равен половине разбиваемого списка, результирующая глубина стека не будет превышать глубину стека для описанного выше случая удачного выбора базового элемента. Таким образом, размера объявленного в процедуре стека окажется вполне достаточно.
Обратите внимание, что такое же улучшение можно было ввести и в рекурсивный алгоритм сортировки. При этом внутренняя процедура быстрой сортировки вызывалась бы для меньшего списка. Внесенное нами небольшое изменение гарантирует, что стек не будет переполнен, если алгоритм быстрой сортировки будет работать на "наихудшем" списке элементов.
Таким образом, нам удалось избавиться от рекурсии, но, как ни странно, экономия времени оказалась незначительной. Более того, в некоторых случаях последний алгоритм работает даже медленнее стандартного (можно предположить, что снижение скорости вызвано определением меньшего списка из двух). Известны и другие улучшения, но они также не дают значительного выигрыша в скорости.
Может быть, у некоторых читателей после изучения кода, приведенного в листинге 5.16, возникла идея написания кода, который бы выполнялся в случае, когда в подсписке находится менее трех элементов. Это и будет нашей следующей областью внесения изменений в алгоритм быстрой сортировки.
Следуя тому же ходу мыслей, что и для сортировки слиянием, можно сказать, что быстрая сортировка будет пытаться сортировать все меньшие и меньшие подсписки, которые эффективнее было бы обрабатывать с помощью других методов.
Представьте себе, что разбиваются только подсписки размером не менее определенного количества элементов. К чему бы привел такой алгоритм быстрой сортировки? Мы получим грубо отсортированный список, т.е. все его элементы будут находиться вблизи требуемых позиций. Подсписки, которые были получены перед прекращением процесса разбиения, будут отсортированы в том смысле, что если подсписок X находится перед подсписком Y, то все элементы подсписка X будут расположены в отсортированном списке перед элементами подсписка Y. Это как раз самое удобное распределение для сортировки методом вставок. Таким образом, работу, начатую быстрой сортировкой, можно завершить с помощью сортировки методом вставок.
Это будет последнее улучшение быстрой сортировки, которое мы рассмотрим. Мы реализовали сверхоптимизированную сортировку без рекурсии, с использованием выбора базовой точки по медиане трех и сортировки методом вставок с целью завершения сортировки.
Листинг 5.18. Оптимизированная быстрая сортировка
const
QSCutOff = 15;
procedure QSInsertionSort(aList : TList;
aFirst : integer; aLast : integer;
aCompare : TtdCompareFunc);
var
i, j : integer;
IndexOfMin : integer;
Temp : pointer;
begin
{найти элемент с наименьшим значением из первых QSCutOff элементов и переместить его на первую позицию}
IndexOfMin := aFirst;
j := QSCutOff;
if (j > aLast) then
j := aLast;
for i := succ(aFirst) to j do
if (aCompare(aList.List^[i], aList.List^[IndexOfMin]) < 0) then
IndexOfMin := i;
if (aFirst <> indexOfMin) then begin
Temp := aList.List^[aFirst];
aList.List^[aFirst] := aList.List^[IndexOfMin];
aList.List^[IndexOfMin] := Temp;
end;
{выполнить сортировку методом вставок}
for i := aFirst+2 to aLast do
begin
Temp := aList.List^[i];
j := i
while (aCompare(Temp, aList.List^[j-1]) < 0) do
begin
aList.List^[j] := aList.List^[j-1];
dec(j);
end;
aList.List^ [j ] :=Temp;
end;
end;
procedure QS( aList : TList;
aFirst : integer;
aLast : integer;
aCompare : TtdComparSFunc);
var
L, R : integer;
Pivot : pointer;
Temp : pointer;
Stack : array [0..63] of integer;
{позволяет разместить до 2 миллиардов элементов}
SP : integer;
begin
{инициализировать стек}
Stack[0] := aFirst;
Stack[1] := aLast;
SP := 2;
{пока в стеке есть подфайлы}
while (SP<> 0) do
begin
{вытолкать верхний подфайл}
dec(SP, 2);
aFirst := Stack[SP];
aLast := Stack[SP+1];
{повторять пока в подфайле есть достаточное количество элементов}
while ((aLast - aFirst) > QSCutOff) do
begin
{выполнить сортировку первого, среднего и последнего элементов и в качестве базовой точки выбрать средний - метод медианы трех}
R := (aFirst + aLast) div 2;
if aCompare(aList.List^[aFirst], aList.List^[R]) > Othen begin
Temp := aList.List^[aFirst];
aList.List^[aFirst] := aList.List^[R];
aList.List^[R] := Temp;
end;
if aCompare(aList.List^[aFirst], aList.List^[aLast]) > 0 then begin
Temp := aList.List^[aFirst];
aList.List^[aFirst] := aList.List^[aLast];
aList.List^ [aLast] := Temp;
end;
if aCompare(aList.List^[R], aList.List^[aLast]) > 0 then begin
Temp := aList.List^[R];
aList.List^[R] := aList.List^[aLast];
aList.List^ [aLast] :=Temp;
end;
Pivot := aList.List^[R];
{задать начальные значения индексов и приступить к разбиению списка}
L := aFirst;
R := aLast;
while true do
begin
repeat
dec(R);
until (aCompare(aList.List^[R], Pivot) <=0);
repeat
inc(1);
until (aCompare(aList.List^[L], Pivot) >=0);
if (L >= R) then
Break;
Temp := aList.List^[L];
aList.List^[L] := aList.List^[R];
aList.List^[R] :=Temp;
end;
{затолкнуть больший подфайл в стек и повторить цикл для меньшего подфайла}
if (R - aFirst) < (aLast - R) then begin
Stack[SP] :=succ(R);
Stack[SP+1] := aLast;
inc(SP, 2);
aLast := R;
end
else begin
Stack[SP] := aFirst;
Stack [SP+1] :=R;
inc(SPs 2);
aFirst := succ(R);
end;
end;
end;
end;
procedure TDQuickSort( aList : TList;
aFirst : integer; aLast : integer;
aCompare : TtdCompareFunc);
begin
TDValidateListRange(aList, aFirst, aLast, 'TDQuickSort');
QS(aList, aFirst, aLast, aCompare);
QSInsertionSort(aList, aFirst, aLast, aCompare);
end;
Эта оптимизированная быстрая сортировка состоит из трех процедур. Первая из них - вызываемая процедура TDQuickSort. Она проверяет корректность переданных параметров, для частично сортировки списка вызывает процедуру QS, а затем для окончательной сортировки вызывает процедуру QSInsertionSort. Процедура QS выполняет нерекурсивный процесс разбиения списка до получения подсписков определенного минимального размера. QSInsertionSort представляет собой процедуру оптимизированной сортировки методом вставок для частично отсортированного списка. В частности, обратите внимание, что элемент с наименьшим значением находится в первых QSCutOf f элементах списка. Это вызвано выполнением процесса разбиения и тем фактом, что при достижении размеров подсписков QSCutOff элементов разбиение прекращается.
Стоила ли игра свеч? Тесты однозначно показывают, что стоила. При сортировке 100000 элементов типа longint оптимизированный алгоритм сортировки потребовал на 18% меньше времени, чем стандартный.
Сортировка слиянием для связных списков
Последним алгоритмом, который мы рассмотрим в этой главе, снова будет сортировка слиянием, но в этот раз применительно к связным спискам. Как вы, наверное, помните, несмотря на высокие показатели быстродействия (алгоритм класса O(n log(n))), использование сортировки слиянием требует наличия вспомогательного массива, размер которого составляет половину размера сортируемого массива. Такая необходимость вызвана тем, что на этапе слияния сортировке нужно куда-то помещать элементы.
Читать дальшеИнтервал:
Закладка: