Джулиан Бакнелл - Фундаментальные алгоритмы и структуры данных в Delphi

Тут можно читать онлайн Джулиан Бакнелл - Фундаментальные алгоритмы и структуры данных в Delphi - бесплатно полную версию книги (целиком) без сокращений. Жанр: comp-programming, издательство ДиаСофтЮП, год 2003. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Фундаментальные алгоритмы и структуры данных в Delphi
  • Автор:
  • Жанр:
  • Издательство:
    ДиаСофтЮП
  • Год:
    2003
  • ISBN:
    ISBN 5-93772-087-3
  • Рейтинг:
    3.5/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Джулиан Бакнелл - Фундаментальные алгоритмы и структуры данных в Delphi краткое содержание

Фундаментальные алгоритмы и структуры данных в Delphi - описание и краткое содержание, автор Джулиан Бакнелл, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Книга "Фундаментальные алгоритмы и структуры данных в Delphi" представляет собой уникальное учебное и справочное пособие по наиболее распространенным алгоритмам манипулирования данными, которые зарекомендовали себя как надежные и проверенные многими поколениями программистов. По данным журнала "Delphi Informant" за 2002 год, эта книга была признана сообществом разработчиков прикладных приложений на Delphi как «самая лучшая книга по практическому применению всех версий Delphi».

В книге подробно рассматриваются базовые понятия алгоритмов и основополагающие структуры данных, алгоритмы сортировки, поиска, хеширования, синтаксического разбора, сжатия данных, а также многие другие темы, тесно связанные с прикладным программированием. Изобилие тщательно проверенных примеров кода существенно ускоряет не только освоение фундаментальных алгоритмов, но также и способствует более квалифицированному подходу к повседневному программированию.

Несмотря на то что книга рассчитана в первую очередь на профессиональных разработчиков приложений на Delphi, она окажет несомненную пользу и начинающим программистам, демонстрируя им приемы и трюки, которые столь популярны у истинных «профи». Все коды примеров, упомянутые в книге, доступны для выгрузки на Web-сайте издательства.

Фундаментальные алгоритмы и структуры данных в Delphi - читать онлайн бесплатно полную версию (весь текст целиком)

Фундаментальные алгоритмы и структуры данных в Delphi - читать книгу онлайн бесплатно, автор Джулиан Бакнелл
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Длина массива, 55, и значения индексов, 54 и 23, - это не просто взятые наугад значения. Было показано, что они дают хорошие последовательности случайных чисел при генерации целых значений. (В книге [11] можно найти таблицы других удачных значений длины массива и индексов.)

Самым хорошим свойством данного генератора является длина цикла. Она просто огромна (при реализации на основе значений типа longint длина цикла будет составлять 230(255- 1), или приблизительно 3 * 1025). Даже если бы вы генерировали каждую секунду триллион случайных чисел, то для того, чтобы пройти весь цикл, потребовались бы годы.

Тасующие генераторы

И последний тип рассматриваемых нами генераторов, позволяющих получать "более случайные" числа, принадлежит к алгоритмам тасования. Здесь мы опишем генератор, реализованный на основе одного внутреннего генератора, хотя существуют и другие генераторы, аналогичным образом использующие два внутренних генератора.

Как и для аддитивного генератора, на первом этапе создается массив случайных чисел с плавающей запятой. Количество элементов в массиве не имеет особого значения. Кнут (Knuth) предложил использовать длины порядка 100. В нашем примере будет использоваться массив из 97 элементов - простое число, близкое к 100 [11]. (Кстати, применение простого числа не обязательно, оно просто выбрано в качестве примера.) Заполним массив случайными числами, полученными с помощью минимального стандартного генератора случайных чисел. Введем новую вспомогательную переменную и установим ее значение равным следующему случайному числу в последовательности.

При необходимости генерации следующего случайного числа с помощью тасующего генератора, вспомогательная переменная используется для вычисления случайного числа из диапазона от 0 до 96. Устанавливаем значение вспомогательной переменной равным значению элемента с вычисленным индексом и заменяем элемент новым случайным числом, полученным от внутреннего генератора случайных чисел. В качестве результата тасующего генератора используется значение вспомогательной переменной.

Листинг 6.11. Тасующий генератор

type

TtdShuffleGenerator = class(TtdBasePRNG) private

FAux : double;

FPRNG : TtdMinStandardPRNG;

FTable : array [0..96] of double;

protected

procedure sgSetSeed(aValue : longint);

procedure sgInitTable;

public

constructor Create(aSeed : longint);

destructor Destroy; override;

function AsDouble : double; override;

property Seed : longint write sgSetSeed;

end;

constructor TtdShuffleGenerator.Create(aSeed : longint);

begin

inherited Create;

FPRNG := TtdMinStandardPRNG.Create(aSeed);

sgInitTable;

end;

destructor TtdShuffleGenerator.Destroy;

begin

FPRNG.Free;

inherited Destroy;

end;

function TtdShuffleGenerator.AsDouble : double;

var

Inx : integer;

begin

Inx := Trunc(FAux * 97.0);

Result := FTable[Inx];

FAux := Result;

FTable[Inx] := FPRNG.AsDouble;

end;

procedure TtdShuffleGenerator.sgSetSeed(aValue : longint);

begin

FPRNG.Seed := aValue;

sgInitTable;

end;

procedure TtdShuffleGenerator.sgInitTable;

var

i : integer;

begin

for i := 96 downto 0 do

FTable[i] := FPRNG.AsDouble;

FAux := FPRNG.AsDouble;

end;

Принимая во внимание, что приведенный генератор возвращает точно те же случайные числа, что и минимальный стандартный генератор, очень интересно обнаружить, что при проверке его в тестовой программе регулярность не проявляется.

Кроме того, следует отметить, что длина цикла тасующего генератора равна длине цикла внутреннего генератора. Суть тасующего генератора заключается в том, что генерируемые им числа выдаются в другом порядке. Длину цикла можно изменить, если для получения индексов использовать еще один генератор случайных чисел. При этом длина цикла соответственно увеличится. (Та же длина цикла получается при использовании двух внутренних генераторов в комбинированном генераторе.)

Выводы по алгоритмам генерации случайных чисел

В предыдущем разделе были рассмотрены несколько достаточно простых генераторов случайных чисел. Наилучшие последовательности чисел позволяют получить два последних генератора, но, к сожалению, они выдвигают жесткие требования к памяти (так, например, последний алгоритм для хранения внутренней таблицы требует почти 800 байт). Самым плохим из рассмотренных был минимальный стандартный генератор, по крайней мере, что касается наличия регулярности в генерируемых им последовательностях случайных чисел, которую, как было показано, можно устранить с помощью алгоритма тасования. Если говорить о личных предпочтениях, то автору книги наиболее импонирует аддитивный генератор: он прост, использует только оператор сложения и генерирует хорошие последовательности статистически независимых случайных чисел. Единственным его недостатком является то, что при необходимости сохранения состояния генератора, нужно сохранять массив и два индекса, что, по сравнению с одним значением начального числа типа longint для минимального стандартного генератора, может показаться слишком огромным объемом данных.

Другие распределения случайных чисел

Если случайные числа используются для моделирования некоторого процесса, то вы можете обнаружить, что все рассмотренные выше генераторы случайных чисел не позволяют решить поставленную задачу. Это вызвано равномерным распределением генерируемых ими случайных чисел, т.е. вероятность возникновения одного случайного числа равна вероятности возникновения любого другого числа. При проведении моделирования бывают необходимы случайные числа, распределенные не по равномерному закону. Тем не менее, для вычисления последовательностей с другими распределениями можно использовать уже изученные нами генераторы случайных чисел.

Вторым по значимости после равномерного является нормальное или гауссово распределение. Оно также известно под названием распределение колокообразной формы, поскольку все точки данных расположены симметрично относительно среднего значения, причем, чем дальше точка от среднего значения, тем меньше вероятность ее получения. Нормальное распределение играет очень важную роль в статистике, где оно используется практически повсеместно. Например, рост людей 42-летнего возраста распределен в соответствии с нормальным распределением. Если попросить измерить длину стола нескольких человек с помощью линейки, длина которой намного короче, чем длина стола (другими словами, в случае существования элемента ошибки), полученный ответ будет соответствовать закону нормального распределения. И подобных примеров можно привести очень много.

Для нормально распределенного набора случайных чисел необходимо знать среднее значение и среднеквадратическое отклонение. Если эти параметры известны, генерация последовательности случайных чисел не представит особого труда. Для генерации мы будем использовать преобразование Бокса-Мюллера. Сами математические выкладки в этой книге не приводятся. Преобразование на своем входе требует два равномерно распределенных случайных числа, а на выходе генерирует два нормально распределенных случайных числа. Это не совсем удобно, поскольку нам, как правило, нужно только одно число за один раз. Однако второе число можно записать и выдать в качестве выходного значения при следующем вызове функции. Обратите внимание, что для многопоточных приложений предложенное решение приведет к тому, что функция не будет независимой от потоков, поскольку неиспользуемое значение придется хранить в глобальной переменной. Указанного недостатка можно избежать, если инкапсулировать вычисление случайных чисел в классе.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Джулиан Бакнелл читать все книги автора по порядку

Джулиан Бакнелл - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Фундаментальные алгоритмы и структуры данных в Delphi отзывы


Отзывы читателей о книге Фундаментальные алгоритмы и структуры данных в Delphi, автор: Джулиан Бакнелл. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x