Джулиан Бакнелл - Фундаментальные алгоритмы и структуры данных в Delphi

Тут можно читать онлайн Джулиан Бакнелл - Фундаментальные алгоритмы и структуры данных в Delphi - бесплатно полную версию книги (целиком) без сокращений. Жанр: comp-programming, издательство ДиаСофтЮП, год 2003. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Фундаментальные алгоритмы и структуры данных в Delphi
  • Автор:
  • Жанр:
  • Издательство:
    ДиаСофтЮП
  • Год:
    2003
  • ISBN:
    ISBN 5-93772-087-3
  • Рейтинг:
    3.5/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Джулиан Бакнелл - Фундаментальные алгоритмы и структуры данных в Delphi краткое содержание

Фундаментальные алгоритмы и структуры данных в Delphi - описание и краткое содержание, автор Джулиан Бакнелл, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Книга "Фундаментальные алгоритмы и структуры данных в Delphi" представляет собой уникальное учебное и справочное пособие по наиболее распространенным алгоритмам манипулирования данными, которые зарекомендовали себя как надежные и проверенные многими поколениями программистов. По данным журнала "Delphi Informant" за 2002 год, эта книга была признана сообществом разработчиков прикладных приложений на Delphi как «самая лучшая книга по практическому применению всех версий Delphi».

В книге подробно рассматриваются базовые понятия алгоритмов и основополагающие структуры данных, алгоритмы сортировки, поиска, хеширования, синтаксического разбора, сжатия данных, а также многие другие темы, тесно связанные с прикладным программированием. Изобилие тщательно проверенных примеров кода существенно ускоряет не только освоение фундаментальных алгоритмов, но также и способствует более квалифицированному подходу к повседневному программированию.

Несмотря на то что книга рассчитана в первую очередь на профессиональных разработчиков приложений на Delphi, она окажет несомненную пользу и начинающим программистам, демонстрируя им приемы и трюки, которые столь популярны у истинных «профи». Все коды примеров, упомянутые в книге, доступны для выгрузки на Web-сайте издательства.

Фундаментальные алгоритмы и структуры данных в Delphi - читать онлайн бесплатно полную версию (весь текст целиком)

Фундаментальные алгоритмы и структуры данных в Delphi - читать книгу онлайн бесплатно, автор Джулиан Бакнелл
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Обратите внимание, что мы исключаем тот редкий случай, когда оба равномерно распределенных случайных числа равны 0, и сумма их квадратов также равна 0, поскольку от этого значения в дальнейшем мы берем логарифм, который для 0 дает бесконечность. Поэтому подобной ситуации следует избегать.

Листинг 6.12. Случайные числа с нормальным распределением

var

NRGNextNumber : double;

NRGNextlsSet : boolean;

function NormalRandomNumber(aPRNG : TtdBasePRNG;

aMean : double;

aStdDev : double): double;

var

Rl, R2 : double;

RadiusSqrd : double;

Factor : double;

begin

if NRGNextlsSet then begin

Result := NRGNextNumber;

NRGNextlsSet := false;

end

else begin

{получить два числа, которые определяют точку внутри окружности единичного радиуса}

repeat

Rl := (2.0 * aPRNG.AsDouble) -1.0;

R2 := (2.0 * aPRNG.AsDouble) - 1.0;

RadiusSqrd := sqr(Rl) + sqr(R2);

until (RadiusSqrd < 1.0) and (RadiusSqrd > 0.0);

{применить преобразование Бокса-Мюллера}

Factor := sqrt(-2.0 * In(RadiusSqrd) / RadiusSqrd);

Result := Rl * Factor;

NRGNextNumber :=R2 * Factor;

NRGNextlsSet :=true;

end;

Result := (Result * aStdDev) + aMean;

end;

Еще одним важным распределением является экспоненциальное. Случайные числа, распределенные по этому закону, используются для моделирования ситуаций "времени прибытия", например, времени прибытия покупателей к кассе в супермаркете. Если в среднем покупатели подходят к кассе каждые x секунд, то время прибытия будет распределено по экспоненциальному закону со средним значением х.

Генерировать случайные числа, распределенные по экспоненциальному закону, достаточно просто. Не вдаваясь в математические подробности можно сказать, что если u - случайное число, распределенное по равномерному закону в диапазоне от 0.0 до 1.0, то e, которое равно

e = -x ln(u)

будет случайном числом, распределенным по экспоненциальному закону со средним значением х.

Листинг 6.13. Случайные числа, распределенные по экспоненциальному закону

function ExponentialRandomNumber( aPRNG : TtdBasePRNG;

aMeart : double): double;

var

R : double;

begin

repeat

R := aPRNG.AsDouble;

until (R <> );

Result := -aMean * ln(R);

end;

И снова обратите внимание, что исключается редкий случай, когда значение равномерно распределенного случайного числа равно 0, поскольку от него будет браться натуральный логарифм.

Списки с пропусками

После подробного описания нескольких генераторов случайных чисел, давайте рассмотрим структуру данных, которая для обеспечения высоких вероятностных характеристик быстродействия использует случайные числа.

Код класса для списков с пропусками можно найти на Web-сайте издательства, в разделе материалов. После выгрузки материалов отыщите среди них файл TDSkpLst.pas.

Помните, в главе 4 мы говорили о том, что при необходимости поиска определенного значения в связном списке нужно начать с его начала и проходить по узлам с помощью указателей Next до тех пор, пока не будет найдено искомое значение. Если список был отсортирован, можно было воспользоваться алгоритмом бинарного поиска, который позволяет минимизировать количество выполняемых сравнений, тем не менее, при этом для прохода по списку также применялись указатели Next.

Вильям Пью (William Pugh) в 1990 году в своей статье "Списки с пропусками: вероятностная альтернатива сбалансированным деревьям" ("Skip Lists: Probabilistic AItemative to Balanced Trees") [18] показал, что существует более удобная альтернатива связным спискам, если мы готовы использовать узлы большего размера с большим количеством указателей.

Вильям Пью разработал вариант не совсем обычного связного списка. На своем самом низком уровне это двухсвязный список с прямым указателем на следующий узел и обратным указателем на предыдущий узел. Однако в некоторых узлах списка с пропусками имеется еще один прямой указатель, направленный на узел, расположенный на несколько позиций вперед. Такой указатель позволяет "перепрыгнуть" через целый ряд других, обычных узлов. Кроме того, в некоторых из этих расширенных узлов имеется еще один дополнительный указатель, который позволяет перешагнуть еще дальше. Таким образом, список с пропусками выглядит примерно так, как показано на рис. 6.3. Обратите внимание, что, в конце концов, все указатели приходят к конечному элементу списка, а начальный узел является началом для прямых указателей всех уровней.

Из рисунка видно, что при поиске значения с использованием новых указателей, мы переходим сначала большими шагами, постепенно уменьшая размер "прыжков", пока искомое значение не будет найдено. Буквально через несколько параграфов процесс поиска будет описан более подробно.

Рисунок 63 Схематичное представление списка с пропусками Поиск в списке с - фото 29

Рисунок 6.3. Схематичное представление списка с пропусками

Поиск в списке с пропусками

Если еще раз внимательно посмотреть на рис. 6.3, можно обратить внимание, что полученный список можно охарактеризовать как несколько объединенных односвязных и двухсвязных списков. На уровне 0 находится двухсвязный список, далее, на уровне 1 - односвязный список, который соединяет каждый второй узел, после него на уровне 2 находится еще один односвязный список, который объединяет каждый четвертый узел и, наконец, на уровне 3 односвязный список соединяет каждый восьмой узел. Таким образом, чтобы, например, найти узел с именем g, нужно перейти по указателю уровня 2 от начального узла к узлу d, затем по указателю первого уровня до узла f и, наконец, по указателю уровня 0 до узла g. Следовательно, теоретически говоря, чтобы найти седьмой узел, нужно будет перейти всего по трем указателям.

Теперь, когда мы в общих чертах рассмотрели алгоритм, давайте опишем его более подробно. Пусть у нас уже имеется список с пропусками. (Скоро мы изучим принцип создания списка с пропусками, однако часть алгоритма создания представляет собой алгоритм поиска, который мы сейчас и рассматриваем.) Алгоритм поиска работает следующим образом:

1. Установить значение переменной LevelNumber равным самому высшему уровню указателей списка с пропусками (предполагается, что уровень списка указывается при его создании и выполнении операций вставки и удаления).

2. Установить переменную BeforeNode на начальный фиктивный узел.

3. Перейти по прямому указателю уровня LevelNumber от узла BeforeNode. Назвать узел, в который мы попали, NextNode.

4. Сравнить элемент в узле NextNode с искомым. Если NextNode является искомым узлом, поиск завершается.

5. Если элемент в узле NextNode меньше искомого, то искомый узел должен находиться после узла NextNode. Установить переменную BeforeNode на узел NextNode и перейти к шагу 3.

6. Если элемент в узле NextNode больше искомого, то искомый узел, если он присутствует в списке, должен находиться между узлами BeforeNode и NextNode. Уменьшаем значение переменной LevelNumber на единицу (другими словами, уменьшаем количество пропускаемых за один шаг узлов).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Джулиан Бакнелл читать все книги автора по порядку

Джулиан Бакнелл - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Фундаментальные алгоритмы и структуры данных в Delphi отзывы


Отзывы читателей о книге Фундаментальные алгоритмы и структуры данных в Delphi, автор: Джулиан Бакнелл. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x