Джулиан Бакнелл - Фундаментальные алгоритмы и структуры данных в Delphi

Тут можно читать онлайн Джулиан Бакнелл - Фундаментальные алгоритмы и структуры данных в Delphi - бесплатно полную версию книги (целиком) без сокращений. Жанр: comp-programming, издательство ДиаСофтЮП, год 2003. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Фундаментальные алгоритмы и структуры данных в Delphi
  • Автор:
  • Жанр:
  • Издательство:
    ДиаСофтЮП
  • Год:
    2003
  • ISBN:
    ISBN 5-93772-087-3
  • Рейтинг:
    3.5/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Джулиан Бакнелл - Фундаментальные алгоритмы и структуры данных в Delphi краткое содержание

Фундаментальные алгоритмы и структуры данных в Delphi - описание и краткое содержание, автор Джулиан Бакнелл, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Книга "Фундаментальные алгоритмы и структуры данных в Delphi" представляет собой уникальное учебное и справочное пособие по наиболее распространенным алгоритмам манипулирования данными, которые зарекомендовали себя как надежные и проверенные многими поколениями программистов. По данным журнала "Delphi Informant" за 2002 год, эта книга была признана сообществом разработчиков прикладных приложений на Delphi как «самая лучшая книга по практическому применению всех версий Delphi».

В книге подробно рассматриваются базовые понятия алгоритмов и основополагающие структуры данных, алгоритмы сортировки, поиска, хеширования, синтаксического разбора, сжатия данных, а также многие другие темы, тесно связанные с прикладным программированием. Изобилие тщательно проверенных примеров кода существенно ускоряет не только освоение фундаментальных алгоритмов, но также и способствует более квалифицированному подходу к повседневному программированию.

Несмотря на то что книга рассчитана в первую очередь на профессиональных разработчиков приложений на Delphi, она окажет несомненную пользу и начинающим программистам, демонстрируя им приемы и трюки, которые столь популярны у истинных «профи». Все коды примеров, упомянутые в книге, доступны для выгрузки на Web-сайте издательства.

Фундаментальные алгоритмы и структуры данных в Delphi - читать онлайн бесплатно полную версию (весь текст целиком)

Фундаментальные алгоритмы и структуры данных в Delphi - читать книгу онлайн бесплатно, автор Джулиан Бакнелл
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

{если узел Child является нулевым, необходимо несколько упростить выполнение цикла и определить родительский и братский узлы и определить, является ли узел Node левым дочерним узлом}

if (Child = nil) then begin

Dad := Node^.btParent;

if (Node = Dad^.btChild[ctLeft]) then begin

ChildType :=ctLeft;

Brother := Dad^.btChild[ctRight];

end

else begin

ChildType :=ctRight;

Brother := Dad^.btChild[ctLeft];

end;

end

else begin

{следующие три строки предназначены просто для введения в заблуждение компилятора и предотвращения вывода ряда ложных предупреждений}

Dad := nil;

Brother := nil;

ChildType :=ctLeft;

end;

{удалить узел — он больше не нужен}

FBinTree.Delete(Node);

dec(FCount);

Node := Child;

{циклически применять алгоритмы балансировки при удалении из красно-черного дерева до тех пор, пока дерево не окажется сбалансированным}

repeat

{предположим, что дерево сбалансировано}

IsBalanced := true;

{если узел является корневым, балансировка выполнена, поэтому предположим, что это не так}

if (Node <> FBinTree.Root) then begin

{получить родительский и братский узлы}

if (Node <> nil) then begin

Dad := Node^.btParent;

if (Node = Dad^.btChild[ctLeft]) then begin

ChildType := ctLeft;

Brother := Dad^.btChild[ctRight];

end

else begin

ChildType := ctRight;

Brother := Dad^.btChild[ctLeft];

end;

end;

{нам требуется наличие черного братского узла, поэтому если в настоящий момент братский узел окрашен в красный цвет, окрасить родительский узел в красный цвет, братский узел в черный цвет и повысить ранг братского узла; затем снова повторить цикл}

if (Brother^.btColor = rbRed) then begin

Dad^.btColor := rbRed;

Brother^.btColor :=rbBlack;

rbtPromote(Brother);

IsBalanced := false;

end

{ в противном случае братский узел является черным}

else begin

{получить узлы-племянники, помеченные как дальний и ближний}

if (ChildType = ctLeft) then begin

FarNephew := Brother^.btChild[ctRight];

NearNephew := Brother^.btChild[ctLeft];

end

else begin

FarNephew := Brother^.btChild[ctLeft];

NearNephew := Brother^.btChild[ctRight];

end;

{если дальний узел-племянник является красным (обратите внимание, что он может быть нулевым), окрасить его в черный цвет, братский узел в цвет родительского узла, а родительский узел в красный цвет, а затем повысить ранг братского узла; задача выполнена}

if IsRed( FarNephew) then begin

FarNephew^.btColor :=rbBlack;

Brother^.btColor := Dad^.btColor;

Dad^.btColor :=rbBlack;

rbtPromote(Brother);

end

{в противном случае дальний узел-племянник является черным}

else begin

{если ближний узел-племянник является красным (обратите внимание, что он может быть нулевым), окрасить его в цвет родительского узла, родительский узел в черный цвет и повысить ранг узла-племянника посредством спаренного двустороннего поворота; в этом случае задача выполнена}

if isRed(NearNephew) then begin

NearNephew^.btColor := Dad^.btColor;

Dad^.btColor :=rbBlack;

rbtPromote(rbtPromote(NearNephew));

end

{в противном случае ближний узел-племянник является также черным}

else begin

{если родительский узел красный, окрасить его в черный цвет, а братский узел в красный, в результате чего задача будет выполнена}

if (Dad^.btColor = rbRed) then begin

Dad^.btColor :=rbBlack;

Brother^.btColor := rbRed;

end

{в противном случае родительский узел красный: окрасить братский узел в красный цвет и начать балансировку с родительского узла}

else begin

Brother^.btColor := rbRed;

Node := Dad;

IsBalanced := false;

end;

end;

end;

end;

end;

until IsBalanced;

end;

За исключением перекрытых методов Insert и Delete, класс TtdRedBlackTree не представляет особого интереса. Код интерфейса и дополнительного внутреннего метода, выполняющего повышение ранга узла, приведен в листинге 8.26.

Листинг 8.26. Класс TtdRedBlack и метод повышения ранга узла

type

TtdRedBlackTree = class(TtdBinarySearchTree) private protected

function rbtPromote(aNode : PtdBinTreeNode): PtdBinTreeNode;

public

procedure Delete(aItem : pointer); override;

procedure Insert(aItem : pointer); override;

end;

function TtdRedBlackTree.rbtPromote(aNode : PtdBinTreeNode): PtdBinTreeNode;

var

Parent : PtdBinTreeNode;

begin

{пометить родительский узел узла, ранг которого повышается}

Parent := aNode^.btParent;

{в обоих случаях существует 6 связей, которые необходимо разорвать и перестроить: связь узла с его дочерним узлом и противоположная связь; связь узла с его родительским узлом и противоположная связь; и связь родительского узла с его родительским узлом и противоположная связь; обратите внимание, что дочерний узел данного узла может быть нулевым}

{повысить ранг левого дочернего узла, т.е. выполнить поворот родительского узла вправо}

if (Parent^.btChild[ctLeft] = aNode) then begin

Parent^.btChild[ctLeft] := aNode^.btChild[ctRight];

if (Parent^.btChild[ctLeft]<> nil) then

Parent^.btChild[ctLeft]^.btParent := Parent;

aNode^.btParent := Parent^.btParent;

if (aNode^.btParent^.btChild[ctLeft] = Parent) then

aNode^.btParent^.btChild[ctLeft] := anode

else

aNode^.btParent^.btChild[ctRight J := aNode;

aNode^.btChild[ctRight] := Parent;

Parent^.btParent := aNode;

end

{повысить ранг правого дочернего узла, т.е. выполнить поворот родительского узла влево}

else begin

Parent^.btChild[ctRight] := aNode^.btChild[ctLeft];

if (Parent^.btChild[ctRight]<> nil) then

Parent^.btChild[ctRight]^.btParent := Parent;

aNode^.btParent := Parent^.btParent;

if (aNode^.btParent^.btChild[ctLeft] = Parent) then

aNode^.btParent^.btChild[ctLeft] := anode else

aNode^.btParent^.btChild[ctRight] := aNode;

aNode^.btChild[ctLeft] := Parent;

Parent^.btParent := aNode;

end;

{вернуть узел, ранг которого был повышен}

Result := aNode;

end;

Исходный код класса TtdRedBlackTree можно найти на Web-сайте издательства, в разделе материалов. После выгрузки материалов отыщите среди них файл TDBinTre.pas.

Резюме

В этой главе мы рассмотрели бинарные деревья - важную структуру данных, которая может использоваться во многих прикладных приложениях. Мы рассмотрели стандартное бинарное дерево, а затем перешли к исследованию его сортированной разновидности - дереву бинарного поиска.

В ходе рассмотрения дерева бинарного поиска мы ознакомились с проблемой, которая может возникнуть во время вставки и удаления - проблемой вырождения дерева, - именно в это связи мы исследовали способы ее устранения. Первое решение, скошенное дерево, предоставляет хорошую возможность, несмотря на то, что при этом эффективность вставки и удаления лишь в среднем, а не всегда, описывается соотношением O(log(n)). Однако эта разновидность дерева представляет собой приемлемый компромисс между стандартным деревом бинарного поиска и таким действительно сбалансированным деревом, как красно-черное дерево.

Воспользовавшись красно-черным деревом, мы, наконец, получили полное дерево бинарного поиска, имеющее встроенные алгоритмы балансировки как для вставки, так и для удаления.

Глава 9. Очереди по приоритету и пирамидальная сортировка.

В главе 3 мы рассмотрели несколько очень простых структур данных. Одной из них была очередь. В эту структуру можно было добавлять элементы, а затем извлекать их в порядке поступления. При этом сохранение даты и времени создания записи позволяло не обращать внимания на реальную длину элемента в очереди. Вместо этого мы просто организовали элементы по порядку их поступления в связный список или массив, а затем удаляли их в порядке поступления. При этом использовались две базовые операции: "добавление элемента в очередь" (называемая еще постановкой в очередь) и "удаление самого старого элемента очереди" (или вывод из очереди).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Джулиан Бакнелл читать все книги автора по порядку

Джулиан Бакнелл - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Фундаментальные алгоритмы и структуры данных в Delphi отзывы


Отзывы читателей о книге Фундаментальные алгоритмы и структуры данных в Delphi, автор: Джулиан Бакнелл. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x