Маркус дю Сотой - О том, чего мы не можем знать. Путешествие к рубежам знаний
- Название:О том, чего мы не можем знать. Путешествие к рубежам знаний
- Автор:
- Жанр:
- Издательство:Литагент Аттикус
- Год:2017
- Город:Москва
- ISBN:978-5-389-12646-6
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Маркус дю Сотой - О том, чего мы не можем знать. Путешествие к рубежам знаний краткое содержание
О том, чего мы не можем знать. Путешествие к рубежам знаний - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
В рассуждении Чёрча есть отголосок той рекурсивной стратегии, которую использовал Гёдель, но на этот раз речь не идет о математике – только о чистой логике. И если Гёдель доказывает, что существуют математические истины, которые невозможно доказать в рамках конкретной непротиворечивой аксиоматической системы математики, Чёрч заходит на шаг дальше и провозглашает существование истины, которую невозможно познать вообще никакими средствами.
Предположим, что имеется истинное утверждение, об истинности которого мы не знаем. На самом деле таких утверждений множество. Например, мой дом полон игральных костей – в нем есть не только кость из казино, лежащая у меня на столе. Еще есть кости из игры «Монополия», игра «Лудо», кости, завалившиеся за диван, кости, закопанные в том беспорядке, который царит в комнатах моих детей. Я не знаю, четно или нечетно число игральных костей, имеющихся в моем доме. Разумеется, это утверждение само по себе не является неразрешимым вопросом, так как я могу систематически обыскать весь дом и узнать ответ на него. Но так же безусловно, в данный момент я этого ответа не знаю.
А теперь держитесь: каждый раз, когда я перечитываю этот фрагмент, у меня кружится голова. Пусть р – истинное утверждение, выбранное из следующих двух: «В моем доме имеется четное число игральных костей» и «В моем доме имеется нечетное число игральных костей». Я не знаю, какое из этих утверждений истинно, но одно из них должно быть истинным. И из существования непознанной истины можно извлечь существование истины непознаваемой. Непознаваемой истиной является следующее утверждение: «Утверждение р истинно, но неизвестно». Оно несомненно истинно. Почему оно непознаваемо? Потому что его познание означает знание того, что утверждение р истинно и неизвестно, но при этом возникает противоречие, так как утверждение р не может одновременно быть неизвестным и известным. Таким образом, само утверждение «Утверждение р истинно, но неизвестно» представляет собой непознаваемое утверждение. Утверждение р само по себе не является непознаваемым. Как я уже сказал, я могу разыскать все игральные кости, находящиеся в доме, и узнать, четно их количество или нечетно. А вот мета-утверждение «Утверждение р истинно, но неизвестно» непознаваемо. Это доказательство работает во всех случаях, в которых существует что-то истинное, но неизвестное. Единственный выход из этого тупика – уже знать все. Все истины могут быть познаваемы, только когда все истины известны.
Хотя это рассуждение стало известно под названием парадокса, никакого парадокса, как замечает Уильямсон, в нем не содержится. Это попросту доказательство существования непознаваемых истин. И после всех наших путешествий к пределам науки оказывается, что тот пробел, который мы искали, можно получить при помощи хитрого логического трюка.
Можем ли мы знать хоть что-нибудь?
Многие из специалистов по философии познания ставят под вопрос то, как много мы вообще можем знать о чем-нибудь. Шотландский философ XVIII в. Дэвид Юм распознал одну из тех фундаментальных проблем, с которыми мы сталкивались при рассмотрении наших вопросов: то, что мы заключены внутри системы. Пытаясь применить научные методы, чтобы установить, что мы что-то знаем, мы попадаем в замкнутый круг, потому что мы используем научные, логические аргументы для доказательства правомерности этих же самых методов. Рассмотреть их извне невозможно. Витгенштейн выразил это положение в более цветистой манере: «Выше задницы не нагадишь» [134].
А как насчет математики? В ней-то мы обладаем некоторыми знаниями. Разве доказательство не дает нам стопроцентной уверенности в том, что, например, существует бесконечное количество простых чисел? Но даже математические доказательства, хотя в них все явно и открыто, должны быть обработаны человеческим мозгом, чтобы можно было убедиться в их правильности. Что, если мы оказываемся убеждены в справедливости доказательства, которое тем не менее содержит малозаметную ошибку? Разумеется, одно из обстоятельств, идущих нам на пользу, состоит в том, что все фатальные ошибки рано или поздно обнаруживают себя. Но в таком случае не значит ли это, что математика существует в процессе эволюции, так же как и естествознание? Специалист по философии математики Имре Лакатос считает, что так оно и есть. Он разработал философию математики, основанную на модели Карла Поппера, который считал, что науку можно только опровергнуть, но нельзя доказать ее истинность. По мнению Лакатоса, невозможно точно знать, что какое-либо доказательство не содержит еще не найденного малозаметного изъяна.
В его книге «Доказательства и опровержения» [135]разворачивается увлекательный диалог между учениками, изучающими доказательство теоремы Эйлера о соотношении вершин, ребер и граней трехмерного многогранника. Он отражает историю развития этой теоремы, гласящей, что Р = В + Г – 2. Сначала ученикам кажется, что они нашли доказательство. Потом один из учеников предлагает тело с отверстием в середине. С этим телом формула не работает. И доказательство тоже. Это можно интерпретировать так, что доказательство работает только с теми телами, для которых оно предназначено. Но тут вводятся новое доказательство и новая теорема, относящиеся к новой формуле, которая помимо вершин, ребер и граней тела учитывает еще и количество отверстий. Эта история иллюстрирует гораздо более эволюционный подход к математическому знанию, чем допускают многие из математиков, более похожий на процесс исследования в естествознании. Насколько же действен тот или другой метод в поисках истины?
Одно из оснований считать, что наука позволяет получить истинное знание, заключается в истории ее достижений. Естественные науки настолько успешно описывают и предсказывают видимое устройство вещей, что нам кажется, что они приближают нас к пониманию реальности, которая, по мнению многих, все-таки существует. То, насколько хорошо наука предсказывает и объясняет различные явления, есть, наверное, главная мера нашего приближения к истине. Если карта, к которой мы последовательно обращаемся, приводит нас к цели, это вполне надежный признак того, что такая карта точно отражает реальность.
Наука создала очень неплохие карты Вселенной. Благодаря нашим открытиям, касающимся природы гравитации, науке удается исследовать отдаленные планеты. Благодаря нашим открытиям в области клеточной биологии мы получили генную терапию, способную справляться с неизлечимыми ранее болезнями. Мы используем свои открытия, касающиеся времени и пространства, для навигации при помощи GPS. Если где-то научная карта перестает работать, мы готовы перечертить ее контуры в поисках описания, которое действительно поможет нам разобраться в окружающем мире. Тут действует закон естественного отбора, выживания наиболее приспособленных теорий: теория выживает, если она и далее позволяет делать точные предсказания и управлять средой. Может быть, на самом деле наука и не отражает реальность, но никакого другого сравнимого с ней средства у нас нет.
Читать дальшеИнтервал:
Закладка: