Маркус дю Сотой - О том, чего мы не можем знать. Путешествие к рубежам знаний
- Название:О том, чего мы не можем знать. Путешествие к рубежам знаний
- Автор:
- Жанр:
- Издательство:Литагент Аттикус
- Год:2017
- Город:Москва
- ISBN:978-5-389-12646-6
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Маркус дю Сотой - О том, чего мы не можем знать. Путешествие к рубежам знаний краткое содержание
О том, чего мы не можем знать. Путешествие к рубежам знаний - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Из теории хаоса следует, что не только игральная кость, но сам человек некоторым образом составляет часть непознаваемого. Хотя каждый из нас – это физическая система, никакое количество данных не позволит нам полностью предсказать человеческое поведение. Гуманитарные дисциплины – это лучший из имеющихся у нас языков для понимания того, что мы вообще можем понять о том, что значит быть человеком.
Исследования сознания обнаруживают границы, дальше которых нам не зайти. Наш внутренний мир потенциально непознаваем для других. Но разве не поэтому – в том числе – мы пишем и читаем романы? Именно они дают другому человеку наиболее действенное средство для проникновения в этот внутренний мир.
То, чего мы знать не можем, создает пространство для существования не только науки, но и мифа, предположения, воображения. Пусть мы чего-то не знаем, но это не мешает нам строить гипотезы, заполняющие эту неизвестность, и эти гипотезы дают нам жизненно важный материал для формирования того, что когда-нибудь может стать известным. Без таких гипотез у нас не было бы никакой науки.
Витгенштейн заканчивает свой «Логико-философский трактат» знаменитой фразой: «О чем невозможно говорить, о том следует молчать» [137]. На мой взгляд, это пораженческое высказывание, и сам Витгенштейн впоследствии считал так же. Лучшей развязкой было бы что-нибудь вроде: «О чем невозможно знать, то можно вообразить». В конце концов, именно с воображения, с гипотез начиналось наше путешествие к познанию того, что мы знаем.
И стимулом этого путешествия всегда было то, чего мы не знаем. Как заявил Максвелл: «Любому подлинному достижению в науке предшествует полностью осознанное невежество». Я безусловно согласен с этим утверждением в приложении к математике. Чтобы сохранить свою убежденность, когда я отправляюсь в неизвестное, мне необходимо верить, что решение существует и я смогу его найти. Знать, что мы чего-то не знаем, жизненно важно для продвижения вперед. Стивен Хокинг также сознает опасность веры в то, что мы знаем все: «Главный враг знания – не невежество, а иллюзия знания».
С моей точки зрения, источник жизненной силы математики – это ее гипотезы, то, чего мы еще не доказали. Именно то, чего я не знаю, побуждает меня продолжать математические поиски. Я хочу узнать, справедлива ли гипотеза Римана и ложна ли гипотеза PORC, которую я исследую в течение последних нескольких десятилетий. Как сказал Джейкоб Броновски, «человеческое знание – дело личное и важное, бесконечное путешествие на грани неопределенности».
Важность наличия еще не достигнутых целей хорошо иллюстрирует то, как странно реагируют многие математики на найденное наконец доказательство одной из великих математических теорем. Завершение математических поисков может вызывать своего рода меланхолическое чувство, подобное той грусти, которую ощущаешь, дочитав великий роман. Мне кажется, что нам так нравилась трудность теоремы Ферма, что решение этой задачи, которым Эндрю Уайлс завершил длившиеся 350 лет поиски, было встречено со смешанным чувством восторга и печали.
Важно сознавать, что в нашей жизни должно существовать неопределенное, неизвестное, непознаваемое. Даже если в конце концов нам удастся создать теорию, описывающую, как устроена Вселенная, мы никогда не будем уверены, что в этой истории нет следующей главы, которая еще ждет своего открытия. Мы никогда не будем знать, что дошли до конца. Как бы нам ни хотелось определенности, в науке мы должны всегда быть готовы оставить уже известное на данный момент и двигаться дальше. Именно поэтому наука жива и никогда не окостенеет.
Поэтому, может быть, мне следует смириться с тем, что, когда я катаю игральную кость в своей руке, ее будущее неопределенно. И когда она наконец выпадает из моей ладони, возможно, именно незнание того, что на ней выпадет, заставляет меня смотреть, как она падает на стол и катится по нему.
Выражение признательности
Я чрезвычайно благодарен всем, кто помог появлению этой книги. Это мой редактор в издательстве 4 thEstate Луиза Хейнс, мой агент в агентстве Greene and Heaton Энтони Топпинг, помощник редактора Сара Тикетт, иллюстратор Джой Госни, литературный редактор и корректоры Эдди Мицци, Джен Маккенн и Стивен Гайз, мои первые читатели Андреас Брандхубер, Джозеф Конлон, Педро Феррейра, Крис Линтотт, Дэн Сигал и Кристиана Тиммел, мои собеседники Боб Мэй, Мелисса Франклин, Джон Полкинхорн, Джон Барроу, Роджер Пенроуз и Кристоф Кох, мои работодатели – Математический институт Отдела непрерывного образования Нью-колледжа Оксфордского университета, мой спонсор Чарльз Симони, мои родные – Шани, Томер, Магали и Ина.
Источники иллюстраций
Все иллюстрации созданы Джой Госни за исключением следующих:
Рубеж первый
С. 40. Пирамида игральной кости © Raymond Turvey.
С. 63. Хаотическая траектория. Иллюстрация создана при помощи функции Restricted Three-Body Problem in a Plane, Wolfram Demonstrations Project: http://demonstrations.wolfram.com/RestrictedThreeBodyProblemInAPlane/.
С. 86. Фрактальное дерево эволюции. Иллюстрация создана на основе изображений, генерируемых программой One Zoom Tree of Life Explorer: http://www.onezoom.org/index.htm.
С. 92. Магнитные поля © Joe McLaren.
С. 96. Четыре графика, иллюстрирующие поведение игральной кости. Созданы на основе материалов статьи M. Kapitaniak, J. Strzalko, J. Grabski and T. Kapitaniak . The three-dimensional dynamics of the die throw // Chaos 22 (4), 2012: 047504.
Рубеж второй
С. 124. Атомы внутри игральной кости. Yikrazuul / Wikimedia Commons / Общественное достояние.
С. 127. Жан Батист Перрен, «Атомы» (автор рисунка в формате SVG – MiraiWarren) / Общественное достояние.
Рубеж третий
С. 217. График перепечатан с разрешения Американского физического общества из статьи C. G. Shull . Single-Slit Diffraction of Neutrons // Physical Review 179, 1969: 752. © 1969 by the American Physical Society: http://dx.doi.org/10.1103/PhysRev.179.752.
Рубеж пятый
С. 372. Энтропия. Иллюстрация создана на основе иллюстрации из книги Penrose Roger. The Emperor’s New Mind: Concerning Computers, Minds, and the Laws of Physics. OUP, 1989.
С. 380. Схема конформной циклической космологии (ССС). © Roger Penrose. Cycles of Time: An Extraordinary New View of the Universe. Bodley Head, 2010.
Рубеж шестой
С. 404. Нейрон. Воспроизводится с любезного разрешения Сантьяго Рамона-и-Кахаля, Cajal Legacy, Instituto Cajal, Мадрид.
С. 430. «Чистота». Рэндел Манро, xkcd.com: http://xkcd.com/435/.
С. 442. Бодрствование и глубокий сон. Иллюстрация создана на основе материалов статьи: Marcello Massimini, Fabio Ferrarelli, Reto Huber, Steve K. Esser, Harpreet Singh, Giulio Tononi. Breakdown of Cortical Effective Connectivity During Sleep // Science 309, 2005: 2228–2232.
С. 446. Две схемы сетей с 8 узлами. Воспроизводится с любезного разрешения авторов. Giulio Tononi and Olaf Sporns. Measuring information integration // BMC Neuroscience 4, 2003.
Автором и издателем были приняты все меры для установления владельцев изображений и других материалов, используемых в этой книге. Если не установленные до сих пор владельцы свяжутся с автором или издателем после публикации этой книги, автор и издатель приложат все усилия для исправления данного положения.
Читать дальшеИнтервал:
Закладка: