Амир Ацель - Почему наука не отрицает существование Бога? О науке, хаосе и пределах человеческого знания
- Название:Почему наука не отрицает существование Бога? О науке, хаосе и пределах человеческого знания
- Автор:
- Жанр:
- Издательство:Array Литагент «Аттикус»
- Год:2015
- Город:М.
- ISBN:978-5-389-09833-6
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Амир Ацель - Почему наука не отрицает существование Бога? О науке, хаосе и пределах человеческого знания краткое содержание
Основой для этой книги послужили личные беседы автора с 11 нобелевскими лауреатами, выдающимися физиками, биологами, антропологами и психологами, а также ведущими богословами и духовными лидерами. Обобщая современные данные многих исследований, Ацель рассказывает о том, что на самом деле знает наука XXI века о существовании Бога.
Почему наука не отрицает существование Бога? О науке, хаосе и пределах человеческого знания - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Докинз в исследовании истинности своих гипотез не использует величину p , стараясь при этом доказать, что Бога или какой-либо иной внешней силы не существует. Таким образом, выводы Докинза ни в коем случае нельзя признать научными. Он отбрасывает тот факт, что великие ученые (Гексли в XIX, а Стивен Джей Гулд в ХХ веке) признавали: наука и Бог могут великолепно сосуществовать. Вот что пишет по этому поводу Докинз:
Наука может подорвать агностицизм, от чего уклонился Гексли, отрицая это в особом случае с Богом. Я утверждаю, что, невзирая на вежливое уклонение Гексли, Гулда и многих других, вопрос о Боге не может быть в принципе отделен от науки. Как в вопросе о звездах (вопреки Конту), как в вопросе о вероятности жизни на обращающихся вокруг них планетах, наука может находить по крайней мере вероятностные способы вылазок на территорию агностиков.
Но каким образом ? Где мы видим вероятностные аргументы против существования Бога? Где вероятности и априорные вероятности, свидетельствующие против гипотезы Бога? Какими способами должна наука совершать свои вероятностные вылазки? Есть разница между выяснением новых фактов о свойствах звезд или даже обнаружением радиосигналов от внеземных цивилизаций (чего, впрочем, до сих пор не случалось) и опровержением существования Бога. Как же нам в таком случае открыть вероятностную истину о Боге?
С другой стороны, можно привести реальный пример того, как коэффициент достоверности p и корректный вероятностный подход используются в ядерной физике.
Недавнее открытие бозона Хиггса, о котором объявлено в Европейском центре по ядерным исследованиям, было обосновано строжайшим доказательством, какое требуется для подтверждения открытия любой частицы: вероятность равна 99,99997 %, а значение p меньше 0,0000003. Такой строгий стандарт доказательства требует огромного количества данных. До тех пор пока эти данные не были получены, специалисты CERN не отваживались объявлять об обнаружении бозона Хиггса. В отличие от этих физиков, Докинз даже не попытался проверить гипотезу Бога с помощью сколько-нибудь корректного вероятностного теста.
Очевидное невежество Докинза и его незнание законов вероятности приводят к невежеству в статистике, и это тем более удивительно, потому что знание статистики необходимо во многих отраслях науки, и прежде всего в той области, какой занимается Докинз, – в биологии. Вот, например, что он утверждает, описывая свое статистическое изучение отношения к вере в Бога членов Королевского общества:
Все 1074 члена Королевского общества, у которых есть адреса электронной почты (подавляющее большинство), были мной опрошены. Ответили 23 %, и это очень хороший результат для такого рода исследований.
Эта цитата – великолепный пример предвзятости в статистических исследованиях. Первое, чему учат начинающих статистиков, – не доверять никакой, даже самой естественной, цензуре. В данном случае такой цензурой послужило использование электронной почты. В честном и строгом статистическом исследовании следовало бы лично обратиться к каждому члену Королевского общества, так как обращение по электронной почте немедленно исключает из исследования некоторых членов интересующей статистика популяции, что приводит к необъективным выводам. (Все мы знаем, что люди по-разному реагируют на непрошеные электронные письма.)
Если Докинз говорит, что 23 % ответивших – хороший результат, то мы вправе спросить: хороший для чего ? Способ, выбранный Докинзом, – это просто классический способ получения предвзятой и вводящей в заблуждение информации. Если на поставленный вопрос ответили лишь 23 % опрошенных, то, значит, самой методике присуща необъективность и пристрастность. Как верующие, так и неверующие в большинстве своем предпочли уклониться от опроса, ибо в противном случае процент ответивших не был бы столь удручающе низким. Этот пример показывает, как нельзя проводить статистические исследования. В настоящем исследовании следовало бы обратиться к людям, не ответившим на электронное письмо, и все же постараться получить ответ, чтобы установить уровень пристрастности и исправить ошибку. Во всяком случае, это одно из самых плохих статистических исследований, с какими мне приходилось сталкиваться. Если 78 % ответивших заявили о том, что не верят в Бога, то это не значит, что среди 77 % членов выборки, не ответивших на вопрос, не преобладали верующие люди. Это исследование бесполезно, и ни один уважающий себя статистик не стал бы обнародовать такие результаты.
Интересно, что религиозные и не имевшие ни малейших представлений о современной статистике люди, жившие на Британских островах в XII веке, достигли поразительных успехов (не пользуясь никакими благами современной науки) в методологии проверки качества золотых и серебряных монет, которые чеканились на королевском монетном дворе. Эта история показывает, что, проявляя добрую волю, не гнушаясь тяжким трудом и стараясь понять что-то о природе и мире, даже глубоко религиозные люди могут делать «правильные вещи», которые впечатляют нас и сегодня, хотя мы знаем неизмеримо больше благодаря знаниям о статистике и вероятности, добытым Фишером и другими учеными.
В Вестминстерском аббатстве стояли несколько больших деревянных ящиков для пробной монеты разных столетий. Ящики эти называли пиксами (от греч. pyxis — ящик). Эти пиксы – исторические раритеты, напоминающие нам о ежегодной пробе монет, в ходе которой почтенная гильдия золотых дел мастеров от имени английской короны «испытывала» смотрителя монетного двора, чтобы выяснить, насколько добросовестно он относился к своей работе. Не впал ли он в одну из двух ошибок: не расточал ли понапрасну королевское золото, чеканя монеты большего веса, и не крал ли золото, чеканя монеты меньшего веса?
Из всех золотых монет, отчеканенных за день, «наудачу» отбирали одну монету и клали ее в ящик. Такой отбор назывался journee , то есть «ежедневный». Один раз в год, когда ящик заполнялся почти целиком, все монеты пересчитывали и взвешивали. Если средний вес монет оказывался больше или меньше положенного стандарта, то смотрителя монетного двора находили виновным в злоупотреблении или недобросовестности.
Статистик Стивен Стиглер, работающий в Чикагском университете, изучил процедуру пробы монет и пришел к выводу, что, несмотря на свою древность, она подчинялась правилам, которым мы следуем и сегодня при статистической проверке гипотез. Проба монет показывает нам, что даже несовершенное знание (статистическое понимание природы, более интуитивное, нежели строго математическое) тоже может приводить к превосходным результатам.
Читать дальшеИнтервал:
Закладка: