Василий Кандинский - О духовном в искусстве. Ступени. Текст художника. Точка и линия на плоскости

Тут можно читать онлайн Василий Кандинский - О духовном в искусстве. Ступени. Текст художника. Точка и линия на плоскости - бесплатно ознакомительный отрывок. Жанр: Биографии и Мемуары, издательство Литагент АСТ, год 2018. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    О духовном в искусстве. Ступени. Текст художника. Точка и линия на плоскости
  • Автор:
  • Жанр:
  • Издательство:
    Литагент АСТ
  • Год:
    2018
  • Город:
    Москва
  • ISBN:
    978-5-17-099078-8
  • Рейтинг:
    4/5. Голосов: 21
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Василий Кандинский - О духовном в искусстве. Ступени. Текст художника. Точка и линия на плоскости краткое содержание

О духовном в искусстве. Ступени. Текст художника. Точка и линия на плоскости - описание и краткое содержание, автор Василий Кандинский, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Василий Кандинский – один из лидеров европейского авангарда XX века, но вместе с тем это подлинный классик, чье творчество определило пути развития европейского и отечественного искусства прошлого столетия. Практическая деятельность художника была неотделима от работы в области теории искусства: свои открытия в живописи он всегда стремился сформулировать и обосновать теоретически. Будучи широко образованным человеком, Кандинский обладал несомненным литературным даром. Он много рассуждал и писал об искусстве. Это обстоятельство дает возможность проследить сложение и эволюцию взглядов художника на искусство, проанализировать обоснование собственной художественной концепции, исходя из его собственных текстов по теории искусства.
В книгу включены важнейшие теоретические сочинения Кандинского: его центральная работа «О духовном в искусстве», «Точка и линия на плоскости», а также автобиографические записки «Ступени», в которых художник описывает стремления, побудившие его окончательно посвятить свою жизнь искусству. Наряду с этим в издание вошло несколько статей по педагогике искусства.

О духовном в искусстве. Ступени. Текст художника. Точка и линия на плоскости - читать онлайн бесплатно ознакомительный отрывок

О духовном в искусстве. Ступени. Текст художника. Точка и линия на плоскости - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Василий Кандинский
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Среди прямых линий мы различаем три типичных вида, все прочие прямые будут лишь их разновидностями.

1. Самая простая форма прямой – горизонталь . В человеческом представлении она соответствует линии или плоскости, на которой человек стоит или по которой он движется. Итак, горизонталь – это холодный несущий базис, плоскость которого может быть продолжена в любом из направлений. Холодность и плоскостность являются основным звучанием этой линии. Она может быть обозначена как самая малая форма бесконечной холодной возможности движения (die knappste Form der unendlichen kalten Bewegungsmöglichkeit).

2. Этой линии в полной мере внешне и внутренне противостоит идущая к ней под прямым углом вертикаль , в которой плоскостность заменяется высотой, а значит холод – теплом. Таким образом, вертикаль является самой малой формой бесконечной теплой возможности движения (die knappste Form der unendlichen warmen Bewegungsmöglichkeit).

Рис 14 Основные типы геометрической прямой Рис 15 Схема основных типов - фото 35

Рис. 14. Основные типы геометрической прямой

Рис 15 Схема основных типов прямых линий 3 Третьим типичным видом прямой - фото 36

Рис. 15. Схема основных типов прямых линий

3. Третьим типичным видом прямой линии является диагональ , которая, будучи проведена под одинаковым углом к двум предыдущим прямым, обладает свойствами их обеих, что и определяет ее внутреннее звучание: равномерное объединение холода и тепла. Итак, она является самой малой формой бесконечной холодно-теплой возможности движения (die knappste Form der unendlichen kaltwarmen Bewegungsmöglichkeit) (рис. 14 и 15).

Температура

Эти три вида линий – самые чистые формы прямых, отличающихся друг от друга температурой :

Все остальные прямые в большей или меньшей степени являются отклонениями от - фото 37

Все остальные прямые в большей или меньшей степени являются отклонениями от диагонали, в большей или меньшей степени склонны к холоду или теплу, что и определяет их внутреннее звучание (рис. 16).

Так, при пересечении этих линий в одной точке возникает звезда из прямых линий.

Рис 16 Схема отклонений в температуре Образование плоскостей Эта звезда может - фото 38

Рис. 16. Схема отклонений в температуре

Образование плоскостей

Эта звезда может становиться все плотнее и плотнее, так что место пересечения создающих ее прямых образует более плотную середину, в которой возникает и кажется растущей точка. Она является осью, вокруг которой линии могут двигаться и, в конце концов, перетекать друг в друга – так рождается новая форма: плоскость с четкой конфигурацией круга (рис. 17 и 18).

Рис 17 Уплотнение Рис 18 Круг как результат уплотнения Здесь следует лишь - фото 39

Рис. 17. Уплотнение

Рис 18 Круг как результат уплотнения Здесь следует лишь мимоходом заметить - фото 40

Рис. 18. Круг как результат уплотнения

Здесь следует лишь мимоходом заметить, что в этом случае мы имеем дело с особым свойством линии – с силой образования ею плоскостей. Внешне эта сила выражается в виде своеобразной лопаты, которая производит плоскость движением своей острой части по земле. Но линия может образовывать и другой вид плоскости, о чем я буду говорить позднее.

Разница между диагоналями и прочими диагональными линиями, которые по праву можно было бы назвать свободными прямыми , проявляется в различии их температур, из-за которого свободные прямые никогда не смогут достичь равновесия между теплом и холодом.

При этом свободные прямые могут располагаться на данной плоскости или в общем центре (рис. 19), или вне центра (рис. 20), в связи с чем они делятся на два класса:

Рис 19 Центральные свободные прямые Рис 20 Ацентральные свободные прямые - фото 41

Рис. 19. Центральные свободные прямые

Рис 20 Ацентральные свободные прямые 4 Свободные прямые находящиеся вне - фото 42

Рис. 20. Ацентральные свободные прямые

4. Свободные прямые (находящиеся вне равновесия):

а) центральные и

б) ацентральные.

Цвета: желтый и синий

Ацентральные свободные прямые обладают особой способностью, которая создает возможность возникновения определенных параллелей с «пестрыми цветами» и которая отличает их от черного и белого. Особенно желтый и синий цвета несут в себе различные напряжения – напряжения выступать вперед и уходить назад. Чисто схематические прямые (горизонталь, вертикаль, диагональ, и в особенности первая и вторая) развивают свои напряжения на плоскости, не проявляя тенденции удаляться от нее.

У свободных, и особенно у ацентральных, прямых мы замечаем ослабленную связь с плоскостью: они в меньшей степени сливаются с нею, а иногда кажется, будто бы они пронзают ее. Так как эти линии утратили элемент покоя, то они оказываются наиболее удаленными от впивающейся в плоскость точки.

На ограниченной плоскости локальная взаимосвязь возможна лишь тогда, когда линия свободно располагается на ней, другими словами, когда линия не касается внешних границ плоскости, о чем более подробно пойдет речь в главе «Основная плоскость».

В любом случае существует определенное родство напряжений ацентральных свободных прямых и «пестрых» цветов. Естественная взаимосвязь «рисуночных» и «живописных» элементов, которую мы сегодня до известных пределов можем уловить, имеет неоценимо большое значение для будущего учения о композиции. Только этим путем могут быть проведены планомерные, точные эксперименты в области конструкций, и коварный туман, в котором мы сегодня обречены блуждать при лабораторной работе, станет, безусловно, более прозрачным и менее удушливым.

Черное и белое

Если схематические прямые – в первую очередь горизонталь и вертикаль – проверить на цветовые свойства, то логично напрашивается сравнение с черным и белым . Так же как эти два цвета (которые коротко называли «нецветами», а сегодня не очень удачно называют «непестрыми» цветами) являются молчащими цветами, так и обе вышеназванные прямые являются молчащими линиями. И здесь, и там звучание доведено до минимума: молчание или едва слышный шепот и покой. Как черное и белое расположены вне цветового круга [147], так и горизонтали и вертикали занимают особое место среди линий, в центральном положении они неповторимы и поэтому одиноки. Если мы черное и белое рассмотрим с точки зрения температуры, то скорее белое, а не черное является теплым, а абсолютно черное внутренне будет непременно холодным. Не случайно горизонтальная цветовая шкала проходит от белого цвета к черному (рис. 21).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Василий Кандинский читать все книги автора по порядку

Василий Кандинский - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




О духовном в искусстве. Ступени. Текст художника. Точка и линия на плоскости отзывы


Отзывы читателей о книге О духовном в искусстве. Ступени. Текст художника. Точка и линия на плоскости, автор: Василий Кандинский. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x