Лев Понтрягин - Жизнеописание Л. С. Понтрягина, математика, составленное им самим

Тут можно читать онлайн Лев Понтрягин - Жизнеописание Л. С. Понтрягина, математика, составленное им самим - бесплатно полную версию книги (целиком) без сокращений. Жанр: Биографии и Мемуары, издательство Прима, год 1998. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Жизнеописание Л. С. Понтрягина, математика, составленное им самим
  • Автор:
  • Жанр:
  • Издательство:
    Прима
  • Год:
    1998
  • Город:
    Москва
  • ISBN:
    нет данных
  • Рейтинг:
    4.25/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Лев Понтрягин - Жизнеописание Л. С. Понтрягина, математика, составленное им самим краткое содержание

Жизнеописание Л. С. Понтрягина, математика, составленное им самим - описание и краткое содержание, автор Лев Понтрягин, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

С именем Понтрягина связана целая эпоха в развитии математики. Труды Л. С. Понтрягина оказали определяющее влияние на развитие топологии и топологической алгебры. Он заложил основы и доказал основные теоремы в оптимальном управлении и теории дифференциальных игр. Его идеи во многом предопределили развитие математики в XX веке.

Текст публикуемого ниже «Жизнеописания...» был написан, по воспоминанию вдовы Льва Семёновича — Александры Игнатьевны Понтрягиной, после тяжёлой болезни, зимой 1982–83 года, и подготовлен к изданию по рукописи, предоставленной вдовой.

Книга насквозь лична и субъективна, но в ней хорошо отражена эпоха развития науки в Советском Союзе, в частности — развитие математики. Она поражает своей правдивостью и открытостью. В этом, может быть, и есть её историческая и воспитательная ценность.

Жизнеописание Л. С. Понтрягина, математика, составленное им самим - читать онлайн бесплатно полную версию (весь текст целиком)

Жизнеописание Л. С. Понтрягина, математика, составленное им самим - читать книгу онлайн бесплатно, автор Лев Понтрягин
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Моё выступление было встречено бурными аплодисментами, а после него Александров подошёл, сел со мной рядом и поблагодарил меня за указание на те ошибки, которые он совершил. И с тех пор наши отношения стали равноправными.

Выступление на этом собрании было первое моё большое публичное выступление. Должен признаться, что, произнося свою речь, я трепетал от волнения, опасаясь, что кто-нибудь из присутствующих встанет, сообщит о моём телефонном звонке Лузину и обвинит меня в двурушничестве, которого по существу не было. Была раздвоенность. Но на собрании никто ничего не сказал. Однако моё поведение некоторыми было расценено как сомнительное. Я узнал об этом совершенно чётко из разговора с Андроновым. Он спросил меня, верно ли, что я звонил Лузину. И когда я сказал, что, да, звонил, он сказал: «А понимаете ли Вы, в какое положение Вы себя поставили? Ведь это же сомнительный поступок: после такого звонка произносить такую речь, какую вы произнесли». Я сказал, что я понимаю. Но я действовал не из соображений подхалимажа, а совершенно искренне. Это были просто колебания в моей оценке происходящего. Андронов понял меня. То же действие дало мне возможность выяснить недоброжелательное отношение ко мне Ефремовича. Ефремович рассказал Колмогорову и Александрову о моём том телефонном звонке Лузину.

Хочу сказать, что со стороны Ефремовича рассказать о моём действии Александрову и Колмогорову было большим предательством меня. О моём звонке Лузину он узнал из моего собственного рассказа, так как меня мучили сомнения и я поделился с ним, как с другом. При этом предполагалось, что никому об этом дружеском разговоре не будет рассказано. Очень скоро после этого Ефремович был арестован, и перед этой большой бедой померкло его мелкое предательство. Так что я снова воспылал к нему дружбой и заботой о нём. Моё выступление по поводу Лузина было рискованным также и с той точки зрения, что многие могли принять его как угодничество перед начальством. В действительности этого не было! Я в самом деле был возмущён поведением Лузина. К выступлению по поводу Лузина я готовился тщательно и отработал его во всех деталях. В дальнейшем я имел время от времени такие выступления по разным поводам и в них в основном выражалась моя общественная активность, пока в конце 60-х годов она не приобрела более постоянный и регулярный характер.

Моя общественная активность была всегда несколько рискованной для меня, а с течением времени она стала просто опасной. Особенно остро я почувствовал это, начиная с 1978 года. А теперь острота этого ощущения всё нарастает. Но об этом я, быть может, расскажу несколько позже.

О моих исследованиях в топологии

Одновременно с написанием книжки «Непрерывные группы» я занимался и другими проблемами. Впрочем, для этого были более существенные причины. Об этом я расскажу, пожалуй, потом.

Так, в 1936 году мною была получена гомотопическая классификация отображений сферы S n +1на сферу S n при n >2. Как я уже говорил, оказалось, что число классов отображений равно 2. Тогда же я занимался отображениями сферы S n +2на сферу S n при n >2, но, сделав ошибку в вычислении, получил неверный результат, установив, что имеется лишь один класс отображений. В действительности же имеются два класса отображений, это я выяснил много лет спустя, когда дал полное изложение этой работы [34] См. работу «Гомотопическая классификация отображений (n+2)-мерной сферы в n-мерную. Опубликовано в кн.: Понтрягин Л. С. Избранные научные труды. Т. I. — М.: Наука, 1988. .

Окончив книжку, я все свои усилия направил на гомотопическую классификацию отображений одного пространства A на другое пространство B . В первую очередь надо было дать классификацию отображений сферы S n + k на сферу S n . Усилия, направленные на решение последней задачи, привели меня к изучению гладких многообразий. Хочу остановиться на этом подробнее, так как в этой области я получил важные результаты.

Два отображения f и g пространства A в пространство B называются гомотопными, если, непрерывно меняя отображение f , можно сделать его совпадающим с g . Проблема гомотопической классификации отображений стала центральной проблемой топологии на много лет. Она оказалась очень трудной даже для простейшего случая — для случая сфер. Если пространство B есть сфера S n , то задачу можно локализовать следующим образом. Выберем на сфере S n произвольную точку p и обозначим через H произвольно малую шаровую окрестность этой точки. Оказывается, что если два отображения f и g совпадают на H , то они гомотопны между собой. Говоря, что отображения f и g совпадают на H, я имею в виду следующее: f –1(H), т.е. полный прообраз шара H при отображении f , совпадает с полным прообразом шара H при отображении g . То есть мы имеем равенство f –1( H ) = g –1( H ) = C . На множестве C отображения f и g совпадают между собой, т.е. при xÎC мы имеем f (x) = g (x). Это очень простое соображение легло в основу всех моих исследований.

Обозначим через q точку, противоположную точке p . Непрерывно растягивая шарик H вдоль его радиусов и одновременно сжимая пространство S n \ H в точку q , мы получим непрерывную деформацию всей сферы S n . Применяя эту деформацию к отображениям f и g , мы убедимся, что в конце этой деформации отображения f и g перейдут в совпадающие. Таким образом, они гомотопны между собой.

В случае если пространство A — гладкое многообразие, локализацию следующим образом можно сделать дифференциальной, т.е. перейти к дифференциалам. Прежде всего, очевидно, что всякое непрерывное отображение гладкого многообразия A на сферу S n можно аппроксимировать гладким отображением. Таким образом, достаточно рассматривать только гладкие отображения многообразия A на сферу S n . Предположим далее, что размерность многообразия A больше или равна размерности сферы S n . Тогда оказывается, что точку p на сфере S n можно выбрать таким образом, чтобы функциональный определитель отображения f в каждой точке x Î f –1( p )= M k многообразия A , переходящей в точку p , был максимальным, т.е. равнялся n . Тогда полный прообраз точки p в пространстве A представляет собой гладкое многообразие размерности k , равной разности размерностей A и S n . В точке p на сфере S n выберем n ортогональных между собой единичных векторов u 1, ..., u n. Обозначим через v i ( x ) вектор пространства A , ортогональный к многообразию M kв точке x и переходящий в вектор u i.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Лев Понтрягин читать все книги автора по порядку

Лев Понтрягин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Жизнеописание Л. С. Понтрягина, математика, составленное им самим отзывы


Отзывы читателей о книге Жизнеописание Л. С. Понтрягина, математика, составленное им самим, автор: Лев Понтрягин. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x